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Abstract

Dominant dimension is introduced into integral representation theory, extending the classical the-
ory of dominant dimension of Artinian algebras to projective Noetherian algebras (that is, algebras
which are finitely generated projective as modules over a commutative Noetherian ring). This new
homological invariant is based on relative homological algebra introduced by Hochschild in the 1950s.
Amongst the properties established here are a relative version of the Morita-Tachikawa correspon-
dence and a relative version of Mueller’s characterization of dominant dimension. The behaviour of
relative dominant dimension of projective Noetherian algebras under change of ground ring is clarified
and we explain how to use this property to determine the relative dominant dimension of projective
Noetherian algebras. In particular, we determine the relative dominant dimension of Schur algebras
and quantized Schur algebras.
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1 Introduction

An Artinian algebra is said to have dominant dimension at least n if the first n terms of an injective
coresolution of the regular module are projective modules. In particular, it has positive dominant dimen-
sion if it admits a faithful projective-injective module. Dominant dimension has been proven to be a very
useful tool to establish a connection between two algebras playing an important role in many correspon-
dences in representation theory of Artinian algebras: for instance, the Morita-Tachikawa correspondence
[Mue68, Theorem 2], Auslander’s correspondence [Aus71], Iyama’s Higher Auslander correspondence
[Iya07]. Auslander’s correspondence is a crucial result in representation theory of Artinian algebras
providing a bijection between Artinian algebras of finite type and Artinian algebras with dominant di-
mension at least two and global dimension at most two. Many versions of Schur–Weyl duality and other
double centralizer properties involve algebras having dominant dimension at least two ([KSX01], [Tac73,
(7.1)]). Moreover, dominant dimension gives computation-free proofs of double centralizer properties in
contrast to more traditional methods. As in [DDPW08, chapter 9], many double centralizer properties
of interest also hold in the integral setup which is no longer an Artinian algebra. Unfortunately, so far,
dominant dimension has not been used in these integral setups since the definition of dominant dimension
for Artinian algebras does not carry over for Noetherian algebras. Indeed, projective-injective modules
rarely exist for Noetherian algebras. Over the years, there were some approaches to extending dominant
dimension by replacing the projective modules by flat (see [Hos89]) or even torsionless (see [Kat68])
modules. But, these notions do not provide much information in applications. In particular, they do
not seem to be very useful to evaluate the connection between two Noetherian algebras. Our aim in
this paper is to introduce a new generalization of dominant dimension for algebras which are finitely
generated projective as modules over a Noetherian ring. This generalization is suitable for computations
and it has the properties that a dominant dimension must have (see [Mue68]). For instance, it is left-right
symmetric and there is a characterization of dominant dimension using homological algebra. In doing so,

1

https://doi.org/10.1016/j.jalgebra.2021.09.029
https://creativecommons.org/licenses/by-nc-nd/4.0/


we dramatically increase the classical theory of dominant dimension to also include problems of integral
representation theory. Moreover, this concept will help us, also in forthcoming work, reducing problems
of integral representation theory to problems of finite dimensional algebras over algebraically closed fields
and vice-versa.

This new relative dominant dimension of Noetherian algebras is based on relative injective modules
instead of (absolute) injective modules (see Definition 3.1). The term relative means that we consider
only the exact sequences over Noetherian algebras which split over the ground ring of the Noetherian
algebra. This leads us to introduce other concepts like strongly faithful modules (see Definition 3.5)
and also allows us to adapt the arguments used in the classical theory to work for Noetherian algebras.
Here, strongly faithful modules replace the role that faithful modules have in classical theory of dominant
dimension.

To simplify the language, by a projective Noetherian algebra we will mean an algebra which is finitely
generated projective as module over a commutative Noetherian ring. At a first glance, we may think that
it would be enough to simply replace the assumption of Artinian by Noetherian once this new definition
of dominant dimension is in place. But this is not the case as we can see in the following relative version
of the Morita-Tachikawa correspondence:

Theorem (see Theorem 4.1). Let R be a commutative Noetherian ring. There is a bijection:(B,M) :

B a projective
Noetherian R-algebra,

M a B-generator (B,R)-cogenerator,
M ∈ R-proj,

DM ⊗B M ∈ R-proj


/
∼1←→

A :
A a projective Noetherian

R-algebra with
domdim (A,R) ≥ 2


/
∼2 .

Here, a module being a generator means that its additive closure contains the regular module and
D denotes the functor HomR(−, R). Further, we see that, in this relative setup, we are only interested
in the generators whose additive closure contains also all relative injective modules and with this extra
property DM ⊗B M ∈ R-proj. This property ensures that the module M is strongly faithful over its
endomorphism algebra. But, most importantly we will see in Theorem 6.14 that this property is equivalent
to requiring a base change property on the endomorphism algebra of the generator. Integral Schur
algebras, for example, possess this property. This extra condition reinforces the idea that using dominant
dimension provides characteristic-free proofs for double centralizer properties also in the integral setup.
For projective Noetherian algebras over a commutative Noetherian ring with Krull dimension at most
one, this version of relative Morita-Tachikawa correspondence can be modified to not include the property
DM ⊗B M ∈ R-proj. In particular, the correspondence established by Auslander and Roggenkamp in
[AR72] involving semisimple orders of finite lattice type is a special case of such a version of relative
Morita-Tachikawa without DM ⊗B M ∈ R-proj (see Theorem 7.3 and 4.3).

Another big difference with the classical case is visible in the relative version of a theorem by Mueller
where we are forced to use Tor functors instead of Ext functors.

Theorem (see Theorem 5.2). Let A be a projective Noetherian R-algebra with positive relative dominant
dimension and with V a projective (A,R)-injective-strongly faithful right A-module. Fix C = EndA(V ).
For any left A-module M being R-projective, the following assertions are equivalent.

(i) domdim(A,R)M ≥ n ≥ 2;

(ii) The map HomA(V,DM) ⊗C V → DM , given by f ⊗ v 7→ f(v), is an isomorphism and for each
1 ≤ i ≤ n− 2, TorCi (HomA(V,DM), V ) = 0.

A main property of relative dominant dimension of projective Noetherian algebras establishing a
connection with the Artinian case is the following:
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Theorem (see Theorem 6.13). Let A be a projective Noetherian R-algebra with positive relative dominant
dimension. Let M ∈ A-mod∩R-proj. Then

domdim(A,R)M = inf{domdimA(m)M(m) : m maximal ideal in R}.

As an application of the theory developed here, we can extend the notions of Morita and gendo-
symmetric algebras to Noetherian algebras. Further, we remark that there are many algebras with
origins in invariant theory and Lie theory that can be covered by our approach that we present here.
Not to mention many algebras arising in deformation theory. In particular, in this paper we compute the
relative dominant dimension of Schur algebras SR(n, d) (when n ≥ d) and q-Schur algebras in the integral
setup, that is, when R is an arbitrary commutative Noetherian ring using the methods introduced in this
paper.

The paper is structured as follows:
In section 2 we recall some notation and folklore results for Noetherian algebras. In subsection 2.3,

we give a brief introduction to relative homological algebra with respect to (A,R)-exact sequences giving
emphasis to relative injective modules. In section 3, we introduce the definition of relative dominant
dimension for projective Noetherian algebras and the notion of strongly faithful module. We explain
that for relative self-injective algebras the latter is exactly the notion of generator. In subsection 3.4, we
present an alternative definition of relative dominant dimension based on the existence of a projective
relative injective strongly faithful module. In subsection 3.5, we establish the equivalence of relative
dominant dimension greater or equal than two with a stronger type of double centralizer property on a
strongly faithful module, namely DV ⊗C V ' DA. Along the way, we reprove many technical results
which are well known for projective left ideals in the classical case. In section 4, we prove a relative version
of Morita-Tachikawa correspondence which is valid for all projective Noetherian algebras. For the cases
of Krull dimension one, a weaker version of the relative Morita-Tachikawa is also considered. In section
5, we give a generalization of Mueller’s characterization of dominant dimension for the relative dominant
dimension of modules that are projective over the ground ring. When the Krull dimension of the ground
ring is one, these modules are known as lattices. We initiate here the study of the influence of the Krull
dimension of the ground ring in the theory of relative dominant dimension of a projective Noetherian
algebra. In subsection 5.1, we obtain more properties of relative dominant dimension including its right-
left symmetry. In section 6, we explore the behaviour of relative dominant dimension under change of
ground rings culminating in the proof of one of the main results of this paper, Theorem 6.13, clarifying the
meaning behind the propertyDM⊗BM ∈ R-proj. In section 7, we aim to exhibit the usefulness of relative
dominant dimension in practice. We observe that some old results like homological characterizations of
lattices of finite type can be written in terms of relative dominant dimension. We can also see that both,
properties of Artinian algebras and classes of such algebras, can be further extended to the realm of
Noetherian algebras. In subsections 7.5 and 7.6, we conclude this paper computing the relative dominant
dimension of Schur algebras and q-Schur algebras showing, in particular, how strongly faithful modules
and the property DM ⊗B M ∈ R-proj appear in applications. A small appendix involving spectral
sequences is attached for a better understanding of Theorem 6.13.

In forthcoming work based on the current paper, the technology introduced here will be used to
deduce results on cover theory of Noetherian algebras.

2 Noetherian algebras and relative homological algebra

In this section, we will introduce the notation to be used throughout this paper and provide some
elementary results involving standard duality with respect to a Noetherian ring to be used several times
in the results ahead. The tensor product is shown to commute with extension of scalars (Proposition
2.3) and homomorphisms from a projective A-module to another module also commute with extension of
scalars (Proposition 2.4). Afterwards, we will discuss the class of (A,R)-exact sequences in 2.3 together
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with the projective and injective objects with respect to this class of exact sequences. This constitutes
the background for the concept of relative dominant dimension of Noetherian algebras.

2.1 Noetherian Algebras

Let R be a commutative Noetherian ring with identity. A is called a Noetherian R-algebra if A is
an algebra over R such that A is finitely generated as an R-module. By a projective Noetherian
R-algebra we mean a Noetherian R-algebra A so that A is a finitely generated projective R-module.

Throughout this paper, R will be a commutative Noetherian ring with identity and A will always be
a projective Noetherian R-algebra, unless stated otherwise.

By a generator of A (or R) we mean a module whose additive closure contains the regular module.
Observe that if A is a Noetherian R-algebra which is free over R, then A is a faithful over R. In such a case
R is contained in the center of A. By A-mod we mean the category of finitely generated left A-modules and
by A-proj the full subcategory of A-mod whose modules are the finitely generated projective A-modules.
By an A-projective finitely generated module we mean a finitely generated projective A-module. We
denote by addAM (or just addM when A is fixed) the full subcategory of A-mod whose modules are
direct summands of finite direct sums of M ∈ A-mod. We write A-proj to denoteaddA. Similarly, mod-A
and proj-A denote the previous subcategories but for right modules. By A-Mod we mean the category
of left A-modules and by AddAM the full subcategory of A-Mod whose modules are direct summands
of direct sums of M ∈ A-Mod. For any M ∈ A-mod and f, g ∈ EndA(M) the multiplication fg is the
composite f ◦ g of g and f . The opposite algebra of A will be denoted by Aop.

By D we mean the standard duality functor HomR(−, R) : A-mod→ Aop-mod. For each prime ideal
p of R, we denote by Rp the localization of R at p. For each M ∈ A-mod, Mp is the localization of M at
the prime ideal p. In particular, Mp ' Rp ⊗R M . By R(p) we mean the residue field Rp/pp associated
to the prime ideal p of R. For maximal ideals m of R the residue field R(m) is also isomorphic to R/m.
For more properties on localizations of rings, we refer to [Coh89, 11.3]

Given a finitely generated (A,B)-bimodule M , there is a double centralizer property on M
between A and B provided that the multiplication maps on M induce isomorphisms A ' EndB(M) and
B ' EndA(M)op.

The following results are quite elementary and folklore but they will be used several times throughout
this paper.

Proposition 2.1. Let A be a projective Noetherian R-algebra. Assume M,N ∈ A-mod∩R-proj. Then,
the map κM,N : HomA(M,N) → D(DN ⊗A M), given by κ(g)(f ⊗m) = f(g(m)), g ∈ HomA(M,N),
f ∈ DN, m ∈M , is an (EndA(M)op,EndA(N)op)-bimodule isomorphism.

Moreover, if DN⊗AM ∈ R-proj the map ιM,N : DN⊗AM → DHomA(M,N), given by ι(f⊗m)(g) =
f(g(m)) for each f ⊗ m ∈ DN ⊗A M, g ∈ HomA(M,N), is an (EndA(N)op,EndA(M)op)-bimodule
isomorphism.

Proof. It follows by Tensor-Hom adjunction and D being a duality functor.

Proposition 2.2. Let A be a Noetherian R-algebra. Assume M,N ∈ A-mod∩R-proj. Then, the map
ψM,N : HomA(M,N)→ HomAop(DN,DM), given by, ψM,N (g)(h) = h ◦ g, g ∈ HomA(M,N), h ∈ DN ,
is an (EndA(M)op,EndA(N)op)-bimodule isomorphism, where D is the standard duality.

Proof. Consider the map eM : M → DDM , given by eM (m)(g) = g(m). This is a (A,EndA(M)op)-
bimodule homomorphism. If M is a free R-module, then it is clear that eM is an (A,EndA(M)op)-
bimodule isomorphism. Since (eM )M∈A-mod is a natural transformation between the functors IdA-mod

and DD we obtain that eM is also an eM is (A,EndA(M)op)-bimodule isomorphism for every M ∈
A-mod∩R-proj.

Define the map δ : HomA(DDM,DDN) → HomA(M,N), given by δ(h) = e−1
N ◦ h ◦ eM , h ∈

HomA(DDM,DDN). This map is bijective since eM and e−1
N are. By simple computations, we de-

duce that eN ◦ δ ◦ ψDN,DM ◦ ψM,N = eN ◦ idHomA(M,N). Hence, δ ◦ ψDN,DM ◦ ψM,N = idHomA(M,N). As
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δ is bijective, ψDN,DM is surjective. By a symmetric argument, we obtain δ′ ◦ ψDDN,DDM ◦ ψDM,DN =
idHomA(DM,DN). Hence, ψDM,DN is also an injective map. It follows that ψM,N is a bijective map. We
leave to the reader to see that ψM,N is an (EndA(M)op,EndA(N)op)-bimodule homomorphism.

2.2 Change of ground rings

Changing the ground ring of a Noetherian algebra has many advantages. The most elementary advantage
follows from the several versions of Nakayama’s Lemma. For instance, a finitely generated R-module is
zero if and only if M(m) is the zero module for all maximal ideals m of R. Also, a finitely generated
R-module is projective if and only if TorR1 (M,R(m)) = 0 for all maximal ideals m of R (see for example
[Rot09, Lemma 8.53] together with the exactness of localization). Here, we collect further elementary
facts to be used later.

Proposition 2.3. Let S be a commutative R-algebra and A a Noetherian R-algebra. Let M ∈ mod-A,
N ∈ A-mod. Then, S ⊗R (M ⊗A N) ' S ⊗RM ⊗S⊗RA S ⊗R N as S-modules.

Proof. Consider the map ψ : S×(M⊗AN)→ S⊗RM⊗S⊗RAS⊗RN , given by ψ(s,m⊗ n) = (s⊗m⊗ 1S ⊗ n),
s ∈ S,m⊗ n ∈M ⊗A N . ψ is linear in each term. Further, for every r ∈ R

ψ(rs,m⊗ n) = rs⊗m⊗ 1S ⊗ n = s⊗ rm⊗ 1S ⊗ n = ψ(s, rm⊗ n).

So, ψ induces uniquely a map ψ′ ∈ Hom(S ⊗RM ⊗AN,S ⊗RM ⊗S⊗RA S ⊗R N) which maps s⊗m⊗ n
to s⊗m⊗ 1S ⊗ n. Such a map is an S-homomorphism since

ψ(ls⊗ (m⊗ n)) = ls⊗m⊗ 1S ⊗ n = sl ⊗m⊗ 1S ⊗ n = s⊗m · (l ⊗ 1A)⊗ 1S ⊗ n
= s⊗m⊗ (l ⊗ 1A) · 1S ⊗ n = s⊗m⊗ l ⊗ n = lψ(s⊗m⊗ n), s, l ∈ S,m ∈M,n ∈ N.

Now, consider the map δ : S⊗RM ×S⊗RN → S⊗RM ⊗AN , given by δ(s⊗m, s′⊗n) = ss′⊗ (m⊗n),
m ∈M, s, s′ ∈ S, n ∈ N . It is clear that this map is bilinear. Let l ⊗ a ∈ S ⊗R A. Then,

δ(s⊗m · l ⊗ a, s′ ⊗ n) = δ(sl ⊗ma, s′ ⊗ n) = (sl)s′ ⊗ (ma⊗ n) = s(ls′)⊗ (m⊗ an) = δ(s⊗m, ls′ ⊗ an)

= δ(s⊗m, (l ⊗ a) · (s′ ⊗ n)).

So, δ induces uniquely a map δ′ ∈ HomS(S⊗RM⊗S⊗RAS⊗RN,S⊗RM⊗AN). The S-homomorphisms
δ′ and ψ′ are inverse to each other, and thus the result follows.

Proposition 2.4. Let S be a commutative R-algebra. Let A be a Noetherian R-algebra. Let M ∈ A-proj
and N ∈ A-mod. Then, S ⊗R HomA(M,N) ' HomS⊗RA(S ⊗RM,S ⊗R N) as S-modules.

Proof. For each M ∈ A-mod, consider the S-homomorphism

ψM : S ⊗R HomA(M,N)→ HomS⊗RA(S ⊗RM,S ⊗R N),

given by ψM (s ⊗ f)(s′ ⊗m) = ss′ ⊗ f(m), s, s′ ∈ S, m ∈ M , f ∈ HomA(M,N). The homomorphism
ψM is compatible with direct sums. This means that if M admits a decomposition M = M1 ⊕M2, then
there exists a commutative diagram

S ⊗R HomA(M1 ⊕M2, N) HomS⊗RA(S ⊗R (M1 ⊕M2), S ⊗R N)

S ⊗R HomA(X,N)⊕ S ⊗R HomA(Y,N) HomS⊗RA(S ⊗R X,S ⊗R N)⊕HomS⊗RA(S ⊗R Y, S ⊗R N)

ψM1⊕M2

' '
ψM1

⊕ψM2

.

Let M = A. Then, there exists a commutative diagram
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S ⊗R HomA(A,N) HomS⊗RA(S ⊗R A,S ⊗R N)

S ⊗R N S ⊗R N

ψA

ψ1' ψ2' .

In fact,

ψ2 ◦ ψM (s⊗ f) = ψ2(s⊗ f)(1S ⊗ 1A) = s1S ⊗ f(1A) = ψ1(s⊗ f).

Therefore, ψA is bijective. Since ψM is compatible with direct sums it follows that ψM is an S-isomorphism
whenever M ∈ A-proj.

The following result is [CPS90, Lemma 3.3.2].

Theorem 2.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Let M ∈ A-mod. Then, M is projective over A if and only if M ∈ R-proj and M(m) is A(m)-projective
for every maximal ideal m in R.

2.3 Relative homological algebra

In this subsection, we assume only that A is a Noetherian R-algebra. Hochschild introduced in the 1950’s
(see [Hoc56]) the concept of (A,R)-exact sequence. This concept did not get much attention at the time
in representation theory of Noetherian algebras although it deserves more attention. Since this notion
is not as commonly used in representation theory of Noetherian algebras as it might be we will recall

with some detail the notions involved in this theory. An A-exact sequence · · · → Mi+1
ti+1−−→ Mi

ti−→
Mi−1 → · · · is called (A,R)-exact if for each i there exists a map hi ∈ HomR(Mi,Mi+1) such that
hi−1 ◦ ti + ti+1 ◦hi = idMi . It is a matter of bookkeeping to check that this last is equivalent to requiring
that for each i, ker ti =im ti+1 is a summand of Mi as R-module. In this formulation, we can see that the
(A,S)-short exact sequences are exactly the exact sequences of A-modules which are split as a sequence

of S-modules. A homomorphism φ is called an (A,R)-monomorphism if 0→M
φ−→ N is (A,R)-exact.

A homomorphism φ is called an (A,R)-epimorphism if M
φ−→ N → 0 is (A,R)-exact.

An A-module Q is (A,R)-projective if every exact sequence of (A,R)-modules 0 → M → N →
Q → 0 splits as a sequence of R-modules. Analogously, we define (A,R)-injective modules. Due to
[Hoc56, Lemma 1, Lemma 2], for each M ∈ R-Mod, X ∈ add(HomR(A,M)), Y ∈ add(A ⊗R M), the
functors HomA(Y,−) and HomA(−, X) are exact on (A,R)-exact sequences. These are exactly all the
(A,R)-injective modules and (A,R)-projective modules, respectively, as we can see from the following
elementary result.

Proposition 2.6. Let M ∈ A-mod. The following assertions are equivalent.

(a) M is (A,R)-injective, that is, every (A,R)-exact sequence 0→M → V →W → 0 is split over A;

(b) The natural homomorphism of A-modules εM : M
'−→ HomA(A,M) → HomR(A,M), ε(m)(a) =

am, ∀a ∈ A, m ∈M , splits over A;

(c) The functor HomA(−,M) is exact on (A,R)-exact sequences.

Proof. Assume (a). Notice that ε′ : HomR(A,M) → M , given by ε′(f) = f(1A), f ∈ HomR(A,M), is
an R-homomorphism since ε′(rf) = rf(1A) = f(1Ar) = r(f(1A)) = rε′(f), ∀r ∈ R, f ∈ HomR(A,M).

Moreover, ε′ ◦ εM = idM . So, the exact sequence 0 → M
εM−−→ HomR(A,M) → coker εM → 0 is (A,R)-

exact. By assumption, it splits over A. In particular, there exists f ∈ HomA(HomR(A,M),M) satisfying
f ◦ εM = idM . So, (b) follows.
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Assume now that (b) holds. By assumption, there exists f ∈ HomA(HomR(A,M),M) such that
f ◦ εM = idM . Hence, εM ◦ f is an idempotent in EndA(HomR(A,M)). So, M is an A-summand of
HomR(A,M). Thus, HomA(−,M) is exact on (A,R)-exact sequences.

Finally, assume that (c) holds. Since every (A,R)-exact sequence 0 → M → V → W → 0 remains
exact under HomA(−,M) they are split over A.

Remark 2.7. It is immediate from Proposition 2.6 (b) that (A,R)-injective resolutions always exist. In
fact, the following exact sequence

C1

0 M HomR(A,M) HomR(A,C0) HomR(A,C1) · · ·

C0

εC1

εM

εC0

is an (A,R)-injective resolution of M , where Ci := coker εCi−1
for i ≥ 1 and C0 := coker εM . We call

this resolution the standard (A,R)-injective resolution.

Analogously, we have the same statement for (A,R)-projective modules. For absolute projective
A-modules, we can say more.

Proposition 2.8. Let M be a finitely generated projective left A-module. Denote B = EndA(M)op.
Then, the functor F = HomA(M,−) sends (A,R)-exact sequences to (B,R)-exact sequences.

Proof. Let · · · → Xi+1
ti+1−−→ Xi

ti−→ Xi−1 → · · · be an (A,R)-exact sequence. In particular, 0→ ker ti
νi−→

Xi
σi−→ ker ti−1 → 0 is (A,R)-exact satisfying ti = νi−1 ◦ σi for all i. Applying F yields the B-exact

sequence 0 → kerFti
Fνi−−→ FXi

Fσi−−→ kerFti−1 → 0, satisfying Fti = Fνi−1 ◦ Fσi. So, it is enough to
show that kerFti is an R-summand of Xi with split monomorphism FKi. So, it is enough to check that
F sends (A,R)-monomorphisms to (B,R)-monomorphisms.

Let 0 → Y
ι−→ X be an (A,R)-monomorphism. In particular, there exists a homomorphism π ∈

HomR(X,Y ) satisfying π ◦ ι = idY . Since M ∈ A-proj, there exists n ∈ N such that An ' M ⊕ K.
Denote πM : An → M and iM : M → An the canonical projection and inclusion, respectively. For each
i = 1, . . . , n, let πi : A

n → A and ki : A → An be the canonical projections and inclusions, respectively.
Denote ψX : HomA(An, X)→ Xn and ψ−1

Y : Y n → HomA(An, Y ) the usual isomorphisms.
Consider ψ := HomA(kM , Y ) ◦ ψ−1

Y ◦ (π, · · · , π) ◦ ψX ◦ HomA(πM , X) ∈ HomR(FX,FY ). Let g ∈
HomA(M,Y ) and m ∈M . Then,

ψ ◦HomA(M, ι)(g)(m) = ψ(ι ◦ g)(m) = HomA(kM , Y ) ◦ ψ−1
Y ◦ (π, · · · , π) ◦ ψX ◦HomA(πM , X)(ι ◦ g)(m)

= ψ−1
Y ((π, · · · , π)(ψX(ι ◦ g ◦ πM )))(kM (m))

= ψ−1
Y ((π, · · · , π)(ι ◦ g ◦ πM ◦ k1(1A), · · · , ι ◦ g ◦ πM ◦ kn(1A))(kM (m))

= ψ−1
Y (g ◦ πM ◦ k1(1A), · · · , g ◦ πM ◦ kn(1A))(kM (m))

=

n∑
i=1

π(kM (m))g ◦ πM ◦ ki(1A) =

n∑
i=1

g ◦ πM ◦ ki(π(kM (m)))

= g ◦ πM ◦ kM (m) = g(m).

Therefore, ψ ◦HomA(M, ι) = idFY . This concludes the proof.

Consequently, (A,R)-exact sequences and all the categorical notions in module categories involving
(A,R)-exact sequences are Morita invariant properties. It will become clearer later on that if a functor
HomA(N,−), with N ∈ A-mod, is exact on a certain (A,R)-exact sequence it will not necessarily map
such (A,R)-exact sequence to relative exact sequence over the endomorphism ring.
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Proposition 2.9. Let V be a finitely generated projective right A-module. Denote B = EndA(V ). Then,
the functor V ⊗A − : A-Mod→ B-Mod sends (A,R)-exact sequences to (B,R)-exact sequences.

Proof. Thanks to V being projective over A, the functors V ⊗A − ' HomA(HomA(V,A), A) ⊗A − '
HomA(HomA(V,A),−) are equivalent. Since HomA(V,A) ∈ A-proj, it follows by Proposition 2.8, that
V ⊗A − sends (A,R)-exact sequences to (B,R)-exact sequences.

Thanks to the existence of the maps hi ∈ HomR(Mi,Mi+1) satisfying hi−1 ◦ ti + ti+1 ◦ hi = idMi
for

a given (A,R)-exact sequence t, the standard duality D = HomR(−, R) maps (A,R)-exact sequences to
(Aop, R)-exact sequences.

2.3.1 Forgetful functors

We say that we have a relative homological algebra if we choose an abelian category together with a class
of exact sequences. A relative abelian category in the sense of Mac Lane [Mac95] consists of the following
data: a pair of abelian categories (A,B) together with a covariant additive, exact and faithful functor
F : A → B.

Consider the forgetful functor F : A-Mod → R-Mod. Since it is a forgetful functor, it is faithful.
This functor preserves biproducts, hence it is additive. Consider the functors G,H : R-Mod → A-Mod,
given by GM = HomR(A,M), HM = A ⊗R M , and Gf = HomR(A, f), Hf = A ⊗R f . It follows
by tensor-hom adjunction that the functor G is a right adjoint of F and H is a left adjoint of F . The
existence of left and right adjoint functors imply that F preserves all finite limits and all finite colimits.
In particular, it preserves kernels and cokernels. Hence F is exact. In view of [Mac95, Chapter 9, 4], a
short exact sequence of A-modules 0→ X → Y → Z → 0 is said to be F -allowable if the exact sequence
0→ FX → FY → FZ → 0 splits over R. These are exactly the (A,R)-exact sequences. We saw that the
objects for which HomA(P,−) is exact on (A,R)-exact sequences are exactly the modules P = A⊗R X,
X ∈ R-Mod. Conversely, using tensor-hom adjunction, we can see that the class of exact sequences which
remains exact under HomA(A⊗R X,−) are exactly the (A,R)-exact sequences.

Nowadays, the most common approach to relative homological algebra is to first consider a class of
objects P of an abelian category A. Then, we can compute the class of exact sequences for which the
class of objects P remain exact under HomA(P,−) for every P ∈ P. The class of (A,R)-exact sequences
is closed in the sense of [EM65]. That is, these two approaches are equivalent for (A,R)-exact sequences.
The literature of relative homological algebra, extending the classical homological algebra theory, is well
developed in this point of view for Artinian algebras A. Hence the interested reader can obtain further
properties on (A,R)-exact sequences like relative Ext and Tor functors by using the same arguments as
the ones presented in [EJ11].

2.3.2 More details on relative injective modules

We will now shift our attention to modules that belong in A-mod∩R-proj once again assuming that A
is a projective Noetherian R-algebra unless stated otherwise. Because of A being projective over R, the
absolute projectives of A-mod are exactly the relative projectives of A-mod∩R-proj. So, our interest
will now be in the relative injective modules. Denote by (A,R)-inj the full subcategory of A-mod whose
modules are (A,R)-injective.

Proposition 2.10. Let I ∈ A-mod∩R-proj. I is (A,R)-injective if and only if Ext1
A(M, I) = 0

for all M ∈ A-mod∩R-proj. Moreover, if I is (A,R)-injective, then Exti>0
A (M, I) = 0 for all M ∈

A-mod∩R-proj.

Proof. Suppose that I is (A,R)-injective. Any A-exact sequence 0 → I → X → M → 0, with
M ∈ R-proj, is (A,R)-exact and so it is split over A. Consider an A-projective resolution for M ∈
A-mod∩R-proj, · · · → P2

α2−→ P1
α1−→ P0

α0−→ M → 0. In particular, there are (A,R)-exact sequences
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0→ imαj → Pj−1 → imαj−1 → 0, thanks to the fact that M ∈ R-proj and consequently for every j ≥ 0,
imαj ∈ R-proj. So, ExtiA(M, I) ' Ext1

A(imαi−1, I) = 0 for every i > 0.
Conversely, assume that Ext1

A(M, I) = 0 for all M ∈ A-mod∩R-proj. Let I → HomR(A, I) be the
standard (A,R)-injective copresentation of I with cokernel X. Since A is projective over R, HomR(A, I)
is R-projective making X an R-projective module. By assumption, the injective copresentation must
split over A and therefore I is (A,R)-injective.

In [Rou08], the modules I ∈ A-mod∩R-proj satisfying the property Ext1
A(M, I) = 0 for all M ∈

A-mod∩R-proj are called relatively R-injective. Therefore, the relatively R-injective modules are exactly
the (A,R)-injective modules which are R-projective. Furthermore, this characterization says that the
(A,R)-injective modules which are R-projective are exactly the objects X of A = A-mod∩R-proj which
make HomA(−, X) exact on A.

Lemma 2.11. Let M ∈ A-mod∩R-proj. M is (A,R)-injective if and only if DM is Aop-projective.

Proof. Let P be a projective (right) A-module. Then, DP is an A-summand of HomR(At, R) '
HomR(A,R)t. Hence, DP is an (A,R)-injective left module.

Let M be an (A,R)-injective and projective R-module. Then, M is an A-summand of HomR(A,M).
Note that

DHomR(A,M) ' HomR(HomR(A,M), R) ' HomR(HomR(A,R)⊗RM,R) (1)

' HomR(M,HomR(HomR(A,R), R)) ' HomR(M,A) ' HomR(M,R)⊗R A (2)

= A⊗R DM. (3)

As DM ∈ R-proj, DHomR(A,M) ∈ Aop-proj and consequently DM ∈ Aop-proj.

Using this Lemma, we can formulate the dual version of Theorem 2.5.

Corollary 2.12. Let A be a projective Noetherian R-algebra. Let P ∈ A-mod∩R-proj. Then, P is
(A,R)-injective if and only if P (m) is an injective A(m)-module for every maximal ideal m in R.

Proof. Assume that P is (A,R)-injective. Then, DP is (Aop, R)-projective. Since P ∈ R-proj, DP ∈
Aop-proj. Let m be a maximal ideal in R. Then, DP (m) = HomR(P,R)(m) ' HomR(m)(P (m), R(m)) is
a projective right A(m)-module. Thus, P (m) ' HomR(m)(HomR(m)(P (m), R(m)), R(m)) is an injective
left A(m)-module.

Conversely, assume that P (m) is an injective left A(m)-module for every maximal ideal m in R. Then,
for every maximal ideal m of R, HomR(m)(P (m), R(m)) ' HomR(P,R)(m) is a projective right A(m)-
module. Thus, DP = HomR(P,R) is an projective right A-module since DP ∈ R-proj. Hence, P ' DDP
is (A,R)-injective.

Remark 2.13. In this sense, relative injective modules can be viewed as a natural generalization of
injective modules of finite dimensional algebras.

Further evidence that (A,R)-monomorphisms behave like the inclusions between modules over finite
dimensional algebras is the following version of Nakayama’s Lemma for (A,R)-monomorphisms.

Lemma 2.14. If φ : M → N is (A,R)-monomorphism and M ' N as finitely generated R-modules,
then φ is an isomorphism.

Proof. Since φ is (A,R)-mono, there exists ε : N → M such that ε ◦ φ = idM . Thus, ε is surjective. By
Nakayama’s Lemma, ε is an R-isomorphism. Therefore, φ = ε−1 ◦ ε ◦ φ = ε−1 is bijective.

For Artinian rings, a module is a cogenerator if and only if contains all injective indecomposable
modules. However, we are only interested in the relative injective modules which are projective over the
ground ring. Thus, for our purposes, we can relax the notion of cogenerator. By an (A,R)-cogenerator
we mean an A-module Q whose additive closure contains the module DAA.

The following Lemma also holds for Noetherian R-algebras.
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Lemma 2.15. Let A be a projective Noetherian R-algebra. Let M,N ∈ Aop-mod∩R-proj. Then,
ExtiAop(M,N) ' ExtiA(DN,DM) for any i ≥ 0.

Proof. Let M• be a left Aop-projective resolution · · · → M1
α1−→ M0

α0−→ M → 0. Since M ∈ R-proj,
all imαi ∈ R-proj. Hence, M• is an (Aop, R)-projective resolution. Moreover, applying D to M• yields

the exact sequence 0 → DM
Dα0−−−→ DM0 → DM1 → · · · , since ExtiR(M,R) = 0 for all i > 0. Each

DMi is (A,R)-injective. Thus, DM• is an (A,R)-injective resolution of DM . The following diagram is
commutative

0 HomAop(M0, N) HomAop(M1, N) · · ·

0 HomA(DN,DM0) HomA(DN,DM1) · · ·

HomAop (α1, N)

ψM0,N ψM1,N

HomA(DN,Dα1)

.

Hence,

ExtiAop(M,N) = Hi(HomAop(M•, N)) = Hi(HomA(DN,DM•)) = Exti(A,R)(DN,DM). (4)

Here, Ext(A,R) denotes the relative Ext functor. Due to every A-projective resolution for DN ∈ R-proj

being (A,R)-exact, it follows that Exti(A,R)(DN,DM) = ExtiA(DN,DM) for every i ≥ 0.

3 Relative QF3 R-algebras

Now, we are ready to introduce the concept of relative dominant dimension of projective Noetherian
algebras (Definition 3.1) and to explain what it means for a module over a Noetherian algebra to have
positive relative dominant dimension (Proposition 3.4). This endeavour leads us to study modules which
are simultaneously projective relative injective and strongly faithful. The latter concept, to be defined
in 3.5, will become very natural to consider once we know the definition of relative dominant dimension.
Further, we show here that for relative self-injective algebras, strongly faithful modules are exactly
the generator objects in the module category (Theorem 3.12). We will extend some known results
of Tachikawa [Tac73] for QF3 algebras to this integral setup and we end this section by developing the
analogue of Mueller’s characterization for smaller levels of relative dominant dimension, that is, for values
of relative dominant dimension one or two (Lemma 3.21 and Proposition 3.23). This can be viewed as
the preparations for the relative Morita-Tachikawa correspondence.

3.1 Definition of relative dominant dimension

Definition 3.1. Let M ∈ A-mod. We say that M has relative dominant dimension at least t ∈ N
if there exists an (A,R)-exact sequence of finitely generated left A-modules

0→M → I1 → · · · → It (5)

with Ii both A-projective and (A,R)-injective. If M admits no such (A,R)-exact sequence, then we say
that M has relative dominant dimension zero. Otherwise, the relative dominant dimension of M is the
supremum of the set of all values t such that an (A,R)-exact sequence of the form 5 exists. We denote
by domdim(A,R)M the relative dominant dimension of M .

Analogously, we can define relative dominant dimension for right A-modules.
Note that if R is a field, A is a finite-dimensional algebra and domdim(A,R)M is exactly the dominant

dimension over A of M .

Proposition 3.2. (A,R)-dominant dimension is invariant under Morita equivalence.
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Proof. Let B be an algebra which is Morita equivalent to A. Thus, B is a projective Noetherian R-
algebra. Since (A,R)-exact sequences and (A,R)-injective modules are preserved under equivalence of
module categories it follows that (A,R)-dominant dimension is invariant under Morita equivalence.

Observe that since the zero module is projective and relative injective, if a module admits a fi-
nite projective (A,R)-injective coresolution, then it has infinite relative dominant dimension. We can
make more precise the case of infinite relative dominant dimension for a module in A-mod∩R-proj
with finite relative injective dimension. In view of Proposition 2.10, the relative injective dimen-
sion of M ∈ A-mod∩R-proj is the minimum number n (if it exists) such that Extn+1

A (N,M) = 0 for
every N ∈ A-mod∩R-proj. The relative injective dimension of M ∈ A-mod∩R-proj is infinite if no
such a number n exists. Hence, the dual of the usual characterizations of projective dimension can be
used for relative injective modules. We will denote by injdim(A,R)M the relative injective dimension of
M ∈ A-mod∩R-proj.

Proposition 3.3. Let M ∈ A-mod∩R-proj having injdim(A,R)M < ∞. The following assertions are
equivalent.

(a) domdim(A,R)M = +∞;

(b) M is A-projective and (A,R)-injective.

Proof. Assume that (b) holds. Consider the (A,R)-exact sequence 0→M →M → 0. By Definition 3.1,
(a) holds.

Assume that (a) holds. In particular, domdim(A,R)M ≥ t = injdim(A,R)M so there exists an (A,R)-

exact sequence 0→M
α0−→ I0

α1−→ · · · αt−→ It with Ii both A-projective and (A,R)-injective (possibly with
some of them being zero). Thanks to Proposition 2.10 together with Extt+1

A (L,M) ' Ext1
(A,R)(L,imαt) =

0 for every L ∈ A-mod∩R-proj, we obtain that imαt is (A,R)-injective. So, it is an A-summand of It.
Thus, it is also A-projective. Further, the exact sequence 0→M → I0 → · · · → imαt → 0 splits over A.
Hence, M ∈add I0.

The result can be generalized for modules in A-mod if one defines relative injective dimension in terms
of relative Ext functors which is a theme that we will not pursue here.

3.2 Modules with relative dominant dimension at least one

The following result characterizes the modules with relative dominant dimension at least one.

Proposition 3.4. Let M ∈ A-mod. Then, domdim(A,R)M > 0 if and only if M is an (A,R)-submodule
of a (left) module that is both A-projective and (A,R)-injective. In particular, domdim(A,R)AA > 0 if
and only if A is an (A,R)-submodule of an A-projective (A,R)-injective (left) module.

Proof. Assume that M is not an (A,R)-submodule of a (left) module that is both A-projective and
(A,R)-injective. Assume by contradiction that domdim(A,R)M > 0. Then, there exists by definition an
(A,R)-monomorphism M → I1 with I1 ∈ A-proj∩(A,R)-inj. This contradicts our assumption. Then,
domdim(A,R)M = 0. Conversely, assume that domdim(A,R)M = 0. By contradiction assume that M is
an (A,R)-submodule of a (left) module that is both A-projective and (A,R)-injective, say N . Then, the
monomorphism M → N is (A,R)-exact and by the definition we get domdim(A,R)M > 0.

As a consequence, we see that every module with positive relative dominant dimension is projective
over the ground ring. Moreover, if A is an order, modules with positive relative dominant dimension are
exactly the R-pure A-submodules of a projective relative injective module. (see [Rei03]). In the classical
theory of dominant dimension the analogue of Proposition 3.4 motivates us to study faithful projective-
injective modules. Indeed, faithful finitely generated modules M can be characterized by the existence of
an A-monomorphism of the regular module A into a finite direct sum of copies of M . The natural choice
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is to consider a generator set of M , say {m1, . . . ,mt}, together with the A-homomorphism A→M t, given
by a 7→ (am1, . . . , amt). For faithful A-modules, this homomorphism is always injective. For Artinian
algebras, such characterization is also valid for non-finitely generated modules since descending chains of
intersection of kernels of homomorphisms are finite. The reason of interest in such a characterization of
faithfulness comes from the fact this turns finitely generated faithful modules and faithful modules over
Artinian algebras into a categorical concept. However, the bigger problem comes from the fact that even
if M is a faithful finitely generated module, a homomorphism of A into a direct sum of copies of M is
not necessarily split over R, whenever A is a Noetherian algebra. The reader may think for example of
an order contained in an over-order.

For now, another thing to keep in mind that is different from the Artinian case is A-mod not being a
Krull-Schmidt category, in general.

3.3 Strongly faithful modules

As discussed, in relative dominant dimension theory, faithful modules without further properties no longer
play a key role in the study of relative dominant dimension of Noetherian algebras. Here they are replaced
by the following concept.

Definition 3.5. We say that a (left) module M is (A,R)-strongly faithful if there is an (A,R)-
monomorphism AA ↪→M t for some t > 0. The definition for right modules is analogous.

If R is a field, then A becomes a finite dimensional algebra. Thus, if R is a field, then (A,R)-strongly
faithful coincides with faithful.

Any generator of A-mod is (A,R)-strongly faithful. Because of M being a generator of A-mod there
exists t > 0 such that M t ' A⊕K as A-modules. In particular, the canonical monomorphism A ↪→M t

splits over A, and thus is an (A,R)-monomorphism.
In terms of relative dominant dimension, Proposition 3.4 says that an algebra has relative domi-

nant dimension greater or equal than one if and only if it has an (A,R)-strongly faithful, A-projective
(A,R)-injective module. By an (A,R)-injective-strongly faithful module we mean a module that is
simultaneously (A,R)-injective and (A,R)-strongly faithful.

Any (A,R)-strongly faithful contains as summand a minimal (A,R)-strongly faithful module in the
following sense.

Proposition 3.6. Let M be a finitely generated A-projective and (A,R)-injective-strongly faithful module.
Then, there exists an (A,R)-strongly faithful module N ∈ addAM which does not contain any proper
(A,R)-strongly faithful module as A-summand.

Proof. If M does not contain a proper (A,R)-strongly faithful module as A-summand, then we are done.
Otherwise, we can write M ' N0

⊕
K0 where N0 is an (A,R)-strongly faithful module. Then, we can

apply the same reasoning to N0. After a finite number of steps, we can construct a proper chain

0 ( K0 ( K1

⊕
K0 ( · · · ( Kn

⊕
· · ·
⊕

K0. (6)

Since M is a Noetherian module, this chain must stabilize. Hence this construction must stop after
a finite number of steps, say t. The module Nt−1 belongs to addM and does not contain any proper
(A,R)-strongly faithful module as A-summand.

Lemma 3.7. Let M be a finitely generated A-projective and (A,R)-injective-strongly faithful module.
Then, every A-projective (A,R)-injective module belongs to addM . In particular, all endomorphism
rings of modules N being finitely generated A-projective and (A,R)-injective-strongly faithful are Morita
equivalent.
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Proof. Let N be a projective and (A,R)-injective A-module. Since N ∈ A-proj then there is an n ∈ Z+
0

and L ∈ A-mod such that An ' N
⊕
L. Denote by kN and πN the canonical injection and projection,

respectively. Since M is (A,R)-strongly faithful, there exists i ∈ HomA(A,M t) and π ∈ HomR(M t, A)
such that π ◦ i = idA. Define f = (i, · · · , i) ◦ kN ∈ HomA(N,M tn). Then,

πN ◦ (π, · · · , π) ◦ f = πN ◦ (π, · · · , π) ◦ (i, · · · , i) ◦ kN = πN ◦ idAn ◦kN = idN . (7)

Thus, f is an (A,R)-monomorphism. Since N is (A,R)-injective f splits over A. In particular, N ∈
addAM .

If N is also (A,R)-strongly faithful, then by reversing the roles of M and N , we obtain M ∈addN .
Thus, addN =addM . This concludes the proof.

For projective Noetherian algebras, it is easier to check the double centralizer property in the presence
of (A,R)-strongly faithful modules. Using Nakayama’s Lemma for (A,R)-monomorphisms 2.14, we can
extend Lemma 2.1 of [KY14] to Noetherian algebras.

Proposition 3.8. Let M be an (A,R)-strongly faithful and B = EndA(M)op. Then, the following
assertions are equivalent.

(i) (A,M) satisfies the double centralizer property, that is, the canonical map A → EndB(M) is an
R-isomorphism of algebras.

(ii) A ' EndB(M) as R-modules.

(iii) A ' EndB(M) as R-algebras.

Proof. i) ⇒ iii) ⇒ ii) is clear. We shall prove ii) ⇒ i). Denote by ρ the canonical map of R-algebras
A→ EndB(M). Since M is (A,R)-strongly faithful, there are maps i ∈ HomA(A,M t), ε ∈ HomR(M t, A),
for some t, satisfying ε ◦ i = idA. Let πj and kj be the canonical projections and injections of the direct
sum M t, j = 1, . . . , t, respectively. Consider ψ : EndB(M)→ A, given by ψ(f) =

∑
j ε◦kj ◦f(πj ◦ i(1A))

for each f ∈ EndB(M). This is an R-map and

ψ ◦ ρ(a) =
∑
j

ε ◦ kj ◦ ρ(a)(πj ◦ i(1A)) =
∑
j

ε ◦ kj(aπj ◦ i(1A))

=
∑
j

ε ◦ kj(πj(i(a))) = ε ◦
∑
j

kk ◦ πji(a) = ε ◦ i(a) = a

Hence, ρ is (A,R)-monomorphism. By Lemma 2.14, since A ' EndB(M) as finitely generated R-modules,
it follows that ρ is an isomorphism. By definition, (A,M) satisfies the double centralizer property.

3.3.1 Relative self-injective algebras

(A,R)-strongly faithful modules play an important role for relative self-injective algebras in the same
fashion that faithful modules play an important role for self-injective Artinian algebras.

Definition 3.9. An R-algebra B is called relative (left) self-injective if BB is (B,R)-injective.

For projective Noetherian R-algebras the notions of relative left and relative right self-injective R-
algebra are equivalent.

Proposition 3.10. Let B be a projective Noetherian R-algebra. Then, B is a relative left self-injective
R-algebra if and only if B is a relative right self-injective R-algebra.
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Proof. Assume that B is a relative right self-injective R-algebra. Then, B is (B,R)-injective as a right
module. By Corollary 2.12, B(m) is an injective right B(m)-module for every maximal ideal m in R. In
particular, every right module being projective over B(m) is injective over B(m). It is well known that
this implies that every finitely generated B(m)-injective module is B(m)-projective ([ARS95, IV. 3]). In
particular, HomR(m)(B(m), R(m)) is B(m)-projective as a right module. So, B(m) is B(m)-injective as a
left module for every maximal ideal m in R. Again, by Theorem 2.12, B is left (B,R)-injective. Thus, B
is a relative left self-injective R-algebra.

Projective Noetherian R-algebras which are relative self-injective were considered several times during
the 1960s. For example, the structure of these algebras that have global dimension at most one was
determined in [End67].

Before we show their relation with strongly faithful modules, we shall see that these algebras are
quite common. In fact, a class of examples of relative self-injective algebras are the group algebras over
a commutative ring. This fact is folklore and its proof is essentially the same as for finite dimensional
algebras (see [CR06, (62.1)]).

Proposition 3.11. For every finite group G, the group algebra RG is a relative self-injective R-algebra
for any commutative ring R.

Proof. Consider the R-linear map π : RG → R, given by π(g) = 1{e}(g)1R, g ∈ G, where e denotes the
identity element of G. Define the RG-map φ : RG→ DRG, given by φ(g)(h) = π(gh) for every h ∈ RG.
Note that

φ(hg)(x) = π((hg)x) = π(h(gx)) = φ(h)(gx) = φ(h)g(x),∀g, h, x ∈ G. (8)

Thus, φ is an RG-right homomorphism. We claim that φ is injective. In fact, let x =
∑
g∈G xgg ∈ kerφ.

Then, for all h ∈ G,

0 = φ(x)(h) = π(xh) = π(
∑
g∈G

xggh) =
∑
g∈G

xg1{e}(gh) = xh−1 . (9)

We shall now prove that φ is surjective. Observe that elements g∗ ∈ DRG, given by g(h) = 1{g}(h)1R,
h ∈ G, form an R-basis of DRG. Moreover, g∗(

∑
g∈G hgg) = hg. We claim that φ(g−1) = g∗ for every

g ∈ G. In fact,

φ(g−1)(x) = π(g−1
∑
h∈G

xhh) =
∑
h∈G

xh1{e}}(g
−1h) =

∑
h∈G

xh1{g}(h) = xg = g∗(x), ∀x ∈ RG. (10)

Therefore, RG ' D(RG) as right RG-modules. Consequently RG ' DDRG ' D(RG) as left RG-
modules, since RG ∈ R-proj. Hence RG is (RG,R)-injective.

Here, 1A denotes the indicator function of a set A.

Theorem 3.12. Let B be a relative (left and right) self-injective R-algebra. Let M be a (B,R)-strongly
faithful module. Then, M is a generator (B,R)-cogenerator and it satisfies a double centralizer property:
A = EndB(M)op and B = EndA(M).

Proof. Since M is (B,R)-strongly faithful, there exists a (B,R)-monomorphism 0 → B → M t. As B is
(B,R)-injective, this monomorphism splits over B. Hence B ∈ addM . In particular, M is a generator
of B-mod. Since double centralizer properties hold on generators, it follows that B ' EndA(M) with
A = EndB(M). Since B is right self-injective algebra then BB belongs to addDBB. Consequently, DBB
belongs to addB B ⊂addM . So, M is a B-generator (B,R)-cogenerator.

Note that every relative self-injective R-algebra has infinite relative dominant dimension. Indeed, we
can consider the (A,R)-exact sequence 0→ A→ A→ 0. In parallel, we conjecture the following relative
version of Nakayama conjecture:
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Conjecture 3.13. Given a projective Noetherian R-algebra, domdim(A,R) = +∞ if and only if A is a
relative (left and right) self-injective R-algebra.

As we will see afterwards in Theorem 6.17, this conjecture is equivalent to the Nakayama conjecture.
Theorem 3.12 motivates us to study endomorphism rings of generators-relative cogenerators. For

finite dimensional algebras over a field, they can be characterized using dominant dimension. In order to
obtain a relative version of this fact for Noetherian algebras, we need first to introduce another definition
of relative dominant dimension.

3.4 Dominant dimension with respect to a projective relative injective mod-
ule

We will now introduce an alternative definition of relative dominant dimension. This will be extremely
useful for the arguments in the proof of relative Morita-Tachikawa correspondence.

Definition 3.14. Let P be an A-projective (A,R)-injective module. Let X ∈ A-mod∩R-proj. If X is
not an (A,R)-submodule of some module in the additive closure of P , then we say that the relative
dominant dimension of X with respect to P is zero. Otherwise, the relative dominant dimen-
sion of X with respect to P , denoted by P − domdim(A,R)X, is the supremum of all n ∈ N such that
there exists an (A,R)-exact sequence

0→ X → P1 → · · · → Pn (11)

with all Pi ∈addA P .

By convention, the empty direct sum is the zero module. So, the existence of a finite relative addP -
coresolutions implies that P − domdim(A,R)X is infinite. In the same way, we can define the relative
dominant dimension of a right module with respect a right projective relative injective module Q.

Definition 3.14 generalizes the concept of relative dominant dimension introduced in 3.1 as we can see
in the following Proposition. Furthermore, this is a generalization of [Tac73, 7.3, 7.7].

Proposition 3.15. Assume that A is a projective Noetherian R-algebra with A-projective (A,R)-injective-
strongly faithful left A-module P . Then,

P − domdim(A,R)X = domdim(A,R)X, X ∈ A-mod . (12)

Proof. Assume that there exists an (A,R)-exact sequence

0→ X → X1 → X2 → · · · → Xn (13)

with Xi an A-projective (A,R)-injective left module for all i ≥ 1. Since all Xi are projective there
exists ki such that Aki ' Xi ⊕ Ki. Choose k = max{k1, . . . , kn}. So, each Xi can be embedded in
Ak as A-summand. Denote by fi : Xi → Aki , gi : A

ki → Ak the canonical injections and denote by
f ′i : Aki → Xi, g

′
i : A

k → Aki the canonical projections. Since P is (A,R)-strongly faithful there exists
an (A,R)-monomorphism l : A → P t for some t > 0. Hence, there exists π ∈ HomR(V t, A) such that
π ◦ l = idA. Then, the composition (⊕kj=1l) ◦ gi ◦ fi ∈ HomA(Xi, P

tk) is an (A,R)-monomorphism. In

fact, f ′i ◦ g′i ◦ (⊕kj=1π) ∈ HomR(V tk, Xi) satisfies

f ′i ◦ g′i ◦ (⊕kj=1π) ◦ (⊕kj=1l) ◦ gi ◦ fi = idXi
.

As Xi is (A,R)-injective, then the map (⊕kj=1l) ◦ gi ◦ fi splits over A. Therefore, Xi is an A-summand

of P tk, hence Xi ∈addP .
If someXi = 0, then domdim(A,R)X = +∞ = P−domdim(A,R)X. This shows that if domdim(A,R)X ≥

n, then P − domdim(A,R)X ≥ n. Hence domdim(A,R)X ≤ P − domdim(A,R)X.
Now since each module in addP is projective (A,R)-injective, it follows that P − domdim(A,R)X ≤

domdim(A,R)X. This concludes the proof.
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Analogously, we have the right version,

Proposition 3.16. Assume that A is a projective Noetherian R-algebra with a projective (A,R)-injective-
strongly faithful right A-module V . Then,

V − domdim(A,R)X = domdim(A,R)X, X ∈ mod-A. (14)

Proof. It is analogous to Proposition 3.15.

3.5 Modules with relative dominant dimension at least two

For given X ∈ A-mod, V ∈ mod-A, denote by C the endomorphism algebra EndA(V ) and by αX the map
X → HomC(V, V ⊗AX) given by αX(x)(v) = v⊗ x, v ∈ V , x ∈ X. This is an (A,EndA(X)op)-bimodule
homomorphism. In fact,

αX(a · x)(v) = v ⊗ ax = va⊗ x = αX(x)(va) = (a · αX(x))(v), a ∈ A, v ∈ V, x ∈ X
αX(x · b)(v) = αX(b(x))(v) = v ⊗ b(x) = v ⊗ (x · b) = (v ⊗ x) · b = (αX(x) · b)(v), b ∈ EndA(X)op, v ∈ V, x ∈ X.

In addition, α is a natural transformation between the functors IdA-mod and HomC(V,−) ◦ V ⊗A −.
The following two lemmas, although being very technical, are crucial to our purposes. We note also

the following lemma involving the Schur functor which will be essential to relative dominant dimension.

Lemma 3.17. Let V ∈ proj-A. Let C = EndA(V ) and the functors F = V ⊗A − : A-mod → C-mod
G = HomC(V,−) : C-mod→ A-mod. The composition of functors F ◦G : C-mod→ C-mod is an equiv-
alence of categories. Moreover ξM : V ⊗A HomC(V,M) → M , given by ξM (v ⊗ φ) = φ(v), v ∈ V, φ ∈
HomC(V,M) is a natural isomorphism for every M ∈ C-mod.

Proof. Fix f ∈ HomC(M,N). We have the commutative diagram,

V ⊗A HomC(V,M) M

V ⊗A HomC(V,N) N

ξM

V⊗AHomC(V ,f) f

ξN

.

In fact, ξN ◦ V ⊗A HomC(V, f)(v ⊗ φ) = ξN (v ⊗ f ◦ φ) = f ◦ φ(v). Whereas f ◦ ξM (v ⊗ φ) = f(φ(v)) for
every v ⊗ φ ∈ V ⊗A HomC(V,M).

Consider the diagram

V ⊗A HomC(V,M) HomA(HomA(V,A), A)⊗A HomC(V,M)

M HomA(HomA(V,A),HomC(V,M))

HomC(C,M) HomC(V ⊗A HomA(V,A),M)

w⊗AidHomC (V ,M)

ξM ψHomC (V ,M)

π−1 ρ

HomC(ψV ,M)

.

Here some remarks about these maps are in order. The map ψHomC(V ,M) is the canonical multiplication
map which is an isomorphism since HomA(V,A) ∈ A-proj. The map ρ is the map given by Tensor-
hom adjunction, and hence it is an isomorphism. The map ψV is the multiplication map which is an
isomorphism thanks to V being a projective right A-module, thus HomC(ψV ,M) is an isomorphism.
The map π is the canonical map given by evaluation at the identity, so an isomorphism as well. The
map w is the natural transformation from the identity functor on V to its double dual. Since V is
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projective, then w is an isomorphism. We claim that this is a commutative diagram. In fact, for
v ⊗ g ∈ V ⊗A HomC(V,M), v′ ⊗ g′ ∈ V ⊗A HomA(V,A), we have

HomC(ψV ,M) ◦ π−1 ◦ ξM (v ⊗ g)(v′ ⊗ g′) = π−1 ◦ ξM (v ⊗ g) ◦ ψV (v′ ⊗ g′)
= π−1 ◦ ξM (v ⊗ g)(v′g′(−)) = π−1(g(v))(v′g′(−))

= v′g′(−) · g(v) = g(v′g′(−) · v) = g(v′g′(v)).

ρ ◦ ψHomC(V,M) ◦ w ⊗ idHomC(V,M)(v ⊗ g)(v′ ⊗ g′) = ρ ◦ ψHomC(V,M)(w(v)⊗ g)(v′ ⊗ g′)
= ρ(w(v)(−)g)(v′ ⊗ g′) = w(v)() · g(g′)(v′)

= (w(v)(g′) · g)(v′) = g′(v) · g(v′) = g(v′g′(v)).

Now by the commutativity of this diagram, it follows that ξM is an isomorphism.

The following can be seen as the relative version of Proposition 4.8 of [Tac73].

Lemma 3.18. Let P be a projective (A,R)-injective left A-module and let V be a projective (A,R)-
strongly faithful right A-module. Fix C = EndA(V ), B = EndA(P )op. Then, the following assertions
hold.

(a) The canonical map αP : P → HomC(V, V ⊗A P ), given by αP (p)(v) = v ⊗ p, v ∈ V , p ∈ P , is an
isomorphism of (A,B)-bimodules.

(b) The canonical map ψ : B → EndC(V ⊗AP )op, given by ψ(f)(v⊗p) = v⊗f(p), f ∈ B, v ∈ V, p ∈ P ,
is an isomorphism as left B-modules and as R-algebras.

(c) V ⊗A P is (C,R)-injective as left C-module.

Proof. We will start by showing that αP (which we will abbreviate to just α) is an (A,R)-monomorphism.
Since P is A-projective there are maps kP ∈ HomA(P,As), πP ∈ HomA(As, P ) satisfying πP ◦ kP =
idP . Since V is (A,R)-strongly faithful there exists i ∈ HomA(A, V t) and ε ∈ HomR(V t, A) such that
ε ◦ i = idA. In addition, consider the A-maps arising from the direct sum V t: νj ∈ HomA(V, V t),
λj ∈ HomA(V t, V ) satisfying λj ◦ νj = idV , the multiplication map µ ∈ HomA(V ⊗A A, V ) and the
canonical maps γj ∈ HomA(V s, (V t)s), γj(v1, . . . , vs) = (νj(v1), . . . , νj(vs)) for 1 ≤ j ≤ t.

Define τ the R-map HomC(V, V ⊗A P )→ P given by

τ(h) =
∑
j

πP ◦ εs ◦ γj ◦ µs ◦ idV ⊗AkP ◦ h ◦ λj ◦ i(1A), h ∈ HomC(V, V ⊗A P ).

Hence,

τ ◦ α(p) =
∑
j

πP ◦ εs ◦ γj ◦ µs ◦ idV ⊗AkP ◦ α(p)(λj ◦ i(1A)) =
∑
j

πP ◦ εs ◦ γj ◦ µs ◦ idV ⊗AkP (λj ◦ i(1A)⊗ p)

=
∑
j

πP ◦ εs ◦ γj ◦ µs(λj ◦ i(1A)⊗ kP (p)) =
∑
j

πP ◦ εs ◦ γj ◦ µs(λj ◦ i(1A)⊗ (kP (p)1, . . . , kP (p)s)

=
∑
j

πP ◦ εs ◦ γj(λj ◦ i(1A)kP (p)1, . . . , λj ◦ i(1A)kP (p)s))

=
∑
j

πP ◦ εs ◦ γj(λj ◦ i(kP (p)1), . . . , λj ◦ i(kP (p)s))

=
∑
j

πP ◦ εs ◦ (νjλj ◦ i(kP (p)1), . . . , νjλj ◦ i(kP (p)s)) = πP ◦ εs(i(kP (p)1), . . . , i(kP (p)s))

= πP (kP (p)1, . . . , kP (p)s) = πP (kP (p)) = p, p ∈ P. (15)
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Thus, τ ◦ α = idP and α is an (A,R)-monomorphism.
We claim that α is an essential embedding, that is, imα ∩Aβ 6= 0 if 0 6= β ∈ HomC(V, V ⊗A P ).
Denote by πV : Al → V , kV : V → Al, πj ∈ HomA(Al, A), kj ∈ HomA(A,Al) the canonical surjections

and injections induced by the direct sum Al, 1 ≤ j ≤ t. For each j, define eV,j = πV ◦ kj(1A) ∈ V and
for each y ∈ V , define φy,j ∈ EndA(V ) = C given by φy,j(x) = y · πj ◦ kV (x), x ∈ V . Then,∑

j

φeV,j ,j · v =
∑
j

φeV,j ,j(v) =
∑
j

eV,j · πj ◦ kV (v) =
∑
j

πV ◦ kj(1A) · πj ◦ kV (v)

=
∑
j

πV ◦ kj(1Aπj ◦ kV (v)) = πV ◦ kV (v) = v. (16)

Let 0 6= β ∈ HomC(V, V ⊗A P ). Hence there exists v ∈ V such that β(v) 6= 0. Moreover, for y ∈ V∑
j

πj ◦ kV (v) · β(y) =
∑
j

β(yπj ◦ kV (v)) =
∑
j

β(φy,j(v)) =
∑
j

β(φy,j · v) =
∑
j

φy,jβ(v). (17)

Assume that β(v) =
∑
i xi ⊗ pi ∈ V ⊗A P . Then,∑

j

φy,jβ(v) =
∑
j,i

φy,jxi ⊗ pi =
∑
i,j

(φy,j · xi)⊗ pi =
∑
i,j

(y · πj ◦ kV (xi))⊗ pi =
∑
i,j

y ⊗ πj ◦ kV (xi)pi

= α(
∑
i,j

πj ◦ kV (xi)pi)(y) =⇒ α(
∑
i,j

πj ◦ kV (xi)pi) = (
∑
j

πj ◦ kV (v)) · β ∈ imα ∩Aβ.

Since∑
j

πj ◦ kV (v)) · β(eV,j) =
∑
j

β(eV,jπj ◦ kV (v))) =
∑
j

β(φeV,j ,jv) = β(
∑
j

φeV,j ,jv) = β(v) 6= 0,

it follows that α is an essential embedding.
Since P is (A,R)-injective and α is (A,R)-mono, there exists h ∈ HomA(HomC(V, V ⊗A P ), P ) such

that h ◦ α = idP . Assume that there exists 0 6= β ∈ im(idHomC(V,V⊗AP )−α ◦ h). As α is an essential
embedding, 0 6=imα∩Aβ ⊂ imα∩im(idHomC(V,V⊗AP )−α◦h) = 0 contradicting the existence of β. Thus,
α ◦ h = idHomC(V,V⊗AP ). So, α is an isomorphism.

The map ψ given in (b) is an B-homomorphism since

ψ(g ◦ f)(v ⊗ p) = ψ(f ◦ g)(v ⊗ p) = v ⊗ f ◦ g(p) = v ⊗ f(p · g) = (idV ⊗f)(v ⊗ p · g) (18)

= (g · (idV ⊗f))(v ⊗ p), v ⊗ p ∈ V ⊗A P, f, g ∈ B. (19)

The map ψ is a homomorphism of R-algebras since

ψ(g · f) = idV ⊗A(f ◦ g) = idV ⊗Af ◦ idV ⊗Ag = idV ⊗Ag · idV ⊗Af = ψ(g) · ψ(f), f, g ∈ B (20)

ψ(idP ) = idV⊗AP . (21)

We claim that ψ is bijective. Towards this goal, our procedure will be as follows. We will construct a
commutative diagram

B P s

HomC(V ⊗A P, V ⊗A P ) HomC(V, V ⊗A P s)

kB

ψ αPs

H
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where H will be a split mono and kB is the natural injection.
Thanks to (αX)X∈A-mod being a natural transformation we obtain by (a) that αP s is an isomorphism.
We can see that, as right B-modules,

P s ' HomA(As, P ) ' HomA(P, P )⊕HomA(K,P ) = B ⊕HomA(K,P ), (22)

for some A-module K and πK and kK being the canonical maps making K an summand of As. We denote
by kB , kX the canonical injections of this direct sum (22) and πB and πX the canonical surjections, where
X = HomA(K,P ). So, explicitly, kB(b) = b ◦ πP (1A, . . . , 1A). In order to define H, we first consider the
following isomorphism τ given by the following commutative diagram:

HomC(V s, V ⊗A P ) HomC(V, V ⊗A P s)

HomC(V, V ⊗A P )s HomC(V, (V ⊗A P )s)

τ

'

'

HomC(V ,σ)

where σ(x1 ⊗ p1, . . . , xs ⊗ ps) = x1 ⊗ (p1, 0, . . . , 0) + . . .+ xs ⊗ (0, . . . , 0, ps).
ConsiderH = τ◦HomC(V⊗AπP ◦θ◦(µ−1)s, V⊗AP ), where θ is the isomorphism (V⊗AA)s → V⊗AAs.

Then,

H ◦ ψ(b)(v) = τ(ψ(b) ◦ V ⊗A πP ◦ θ ◦ (µ−1)s)(v)

= σ(ψ(b) ◦ V ⊗A πP ◦ θ ◦ (µ−1)s(v, 0, . . . , 0), . . . , ψ(b) ◦ V ⊗A πP ◦ θ ◦ (µ−1)s(0, . . . , 0, v))

= σ(ψ(b) ◦ V ⊗A πP θ(v ⊗ 1A, 0, . . . , 0), . . . , ψ(b) ◦ V ⊗A πP θ(0, . . . , 0, v ⊗A 1A)) (23)

= σ(ψ(b) ◦ V ⊗A πP (v ⊗ (1A, 0, . . . , 0)), . . . , ψ(b) ◦ V ⊗A πP (v ⊗ (0, . . . , 0, 1A))) (24)

= σ(v ⊗ bπP (1A, . . . , 0), . . . , v ⊗ bπP (0, . . . , 1A)) = v ⊗ bπP (1A, . . . , 1A) (25)

αP s ◦ kB(b)(v) = αP s(b ◦ πP (1A, . . . , 1A))(v) = v ⊗ bπP (1A, . . . , 1A), v ∈ V, b ∈ B. (26)

Hence, H ◦ψ is injective. In particular, ψ is injective. Since V ⊗A πP ◦θ ◦ (µ−1)s ∈ HomC(V s, V ⊗AP ) is
the surjection that gives V ⊗A P as C-summand of V s the map HomC(V ⊗A πP ◦ θ ◦ (µ−1)s, V ⊗A P ) is
split monomorphism. So, H is a split monomorphism. Thus, there exists a map H ′ such that H ′◦H = id.
In particular, ψ ◦ πB = H ′ ◦ αP s ◦ kB ◦ πB = H ′ ◦ αP s is surjective if H ′ ◦ αP s ◦ kX ◦ πX = 0. So, it
remains to show that H ′ ◦ αP s ◦ kX ◦ πX = 0.

Observe that H ′ = HomC(µs ◦ θ−1 ◦V ⊗A kP , V ⊗A P ) ◦ τ−1 and in the following πAj ∈ HomA(As, A),

kAj ∈ HomA(A,As) will denote the surjections and injections of the direct sum As.
Thus,

H ′αP skXπX(p1, . . . , ps)(v ⊗ p) = τ−1(αP skXπX(p1, . . . , ps))(µ
s ◦ θ−1 ◦ V ⊗A kP (v ⊗ p))

= τ−1(αP skXπX(p1, . . . , ps))(vπ
A
1 kP (p), . . . , vπAs kP (p))

=

s∑
i=1

vπAi kP (p)⊗
∑
j

πAj kKπKk
A
i (1A)pj

= v ⊗
s∑

i,j=1

πAj kKπKk
A
i π

A
i (kP (p))pj

= v ⊗
s∑
j=1

piAj kKπKkP (p)pj = 0, pi, p ∈ P, v ∈ V, 1 ≤ i ≤ s.

The last equality follows since πK ◦ kP = 0. So, (b) follows.
Consider the canonical C-monomorphism εV⊗AP : V ⊗A P → HomR(C, V ⊗A P ). The following

diagram is commutative
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HomC(V, V ⊗A P ) HomC(V,HomR(C, V ⊗A P ))

P HomR(V, V ⊗A P )

HomC(V ,ε)

fαP

δ

where δ : P → HomR(V, V ⊗A P ) is the morphism given by δ(p)(v) = v ⊗ p, and f is canonical map
given by tensor-hom adjunction. We want to show that the map δ is an (A,R)-monomorphism. For that
purpose, we need further notation. Define τ ′ the R-map HomR(V, V ⊗A P )→ P given by

τ(h) =
∑
j

πP ◦ εs ◦ γj ◦ µs ◦ idV ⊗AkP ◦ h ◦ λj ◦ i(1A), h ∈ HomR(V, V ⊗A P ).

Using the same computations as in (15), it follows that τ ′ ◦ δ = idP . Since P is (A,R)-injective, it follows
that P ∈addA HomR(V, V ⊗A P ). Therefore, V ⊗A P ∈addC V ⊗A HomR(V, V ⊗A P ). By Tensor-Hom
adjunction and Lemma 3.17,

V ⊗A HomR(V, V ⊗A P ) ' V ⊗A HomC(V,HomR(C, V ⊗A P )) ' HomR(C, V ⊗A P ). (27)

Thus, V ⊗A P ∈addC HomR(C, V ⊗A P ) and V ⊗A P is (C,R)-injective.

Lemma 3.19. Let P be a projective (A,R)-strongly faithful left A-module and let V be a projective
(A,R)-injective right A-module. Denote C = EndA(V ), B = EndA(P )op. Then, the following assertions
hold.

(a) The canonical map αV : V → HomB(P, V ⊗A P ), given by αV (v)(p) = v ⊗ p, v ∈ V , p ∈ P , is an
isomorphism of (C,A)-bimodules.

(b) The canonical map ψC : C → EndB(V ⊗AP ), given by ψC(f)(v⊗p) = f(v)⊗p, f ∈ B, v ∈ V, p ∈ P ,
is an isomorphism as left C-modules and as R-algebras.

(c) V ⊗A P is (B,R)-injective as right B-module.

Proof. It is the dual version of Theorem 3.18.

At this point, it is not yet clear that the existence of a projective relative injective strongly faithful
left module implies the existence of a projective relative injective strongly faithful right module. For
this we will need change of rings techniques. We are aiming to obtain better tools to compute relative
dominant dimension of modules for algebras with positive relative dominant dimension. Given that, we
need to require for now the existence of both a projective relative injective strongly faithful left module
and a a projective relative injective strongly faithful right module.

Definition 3.20. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra.
Let P ∈ A-mod and V ∈ mod-A. We call a triple (A,P, V ) a relative QF3 R-algebra, or just RQF3
algebra provided P is an A-projective (A,R)-injective-strongly faithful left A-module and V is an A-
projective (A,R)-injective-strongly faithful right A-module.

It will become clear in Corollary 6.6 that RQF3 algebras are exactly the algebras having positive
relative dominant dimension.

Given X ∈ A-mod, V ∈ mod-A, denote by ΦX the map HomA(V,DX) ⊗C V → DX defined by
ΦX(g ⊗ v) = g(v), v ∈ V , g ∈ HomA(V,DX). This map is an (EndA(X)op, A)-bimodule homomorphism.
In fact, if b ∈ EndA(X)op, g ⊗ v ∈ HomA(V,DX)⊗C V and a ∈ A, then

ΦX(b · (g ⊗ v)) = ΦX(b · g)⊗ v) = (b · g)(v) = bg(v) = bΦX(g ⊗ v), (28)

ΦX((g ⊗ v) · a) = ΦX(g ⊗ v · a) = g(v · a) = g(v)a = ΦX(g ⊗ v) · a. (29)
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Dually, we can define the map δY : P ⊗B HomA(P,DY ) → DY , given by δY (p ⊗ h) = h(p), p ∈ P ,
h ∈ HomA(P,DY ) for any P ∈ A-mod and Y ∈ mod-A.

In the same manner, δY is an (A,EndA(Y ))-bimodule homomorphism.

Lemma 3.21. Let (A,P, V ) be a RQF3 algebra. Denote C = EndA(V ), B = EndA(P )op. Then, the
following assertions hold.

(a) addADV =addA P . Furthermore, B is Morita equivalent to C.

(b) V ⊗A P satisfies a double centralizer property

EndB(V ⊗A P ) ' C, EndC(V ⊗A P )op ' B

and V ⊗A P is a left (C,R)-injective-cogenerator and a right (B,R)-injective-cogenerator.

(c) P ∈ mod-B is a B-generator (B,R)-cogenerator and R-projective;

(d) V ∈ C-mod is a C-generator (C,R)-cogenerator and R-projective.

(e) The canonical map ΦX : HomA(V,DX) ⊗C V → DX, given by ΦX(g ⊗ v) = g(v), v ∈ V , g ∈
HomA(V,DX), is an A-isomorphism for any X ∈addA P .

(f) The canonical map δY : P ⊗B HomA(P,DY ) → DY , given by δY (p ⊗ h) = h(p), p ∈ P , h ∈
HomA(P,DY ), is an A-isomorphism for any Y ∈addA V .

Proof. By Lemma 2.11, DP is an A-projective (A,R)-injective right module and DV is an A-projective
(A,R)-injective left module. According to Lemma 3.7, DP ∈addV and DV ∈addP . Hence, P ∈addDV
and C ' EndA(DV )op is Morita equivalent to B = EndA(P )op. Thus, (a) follows.

Note that D(V ⊗A P ) ' HomA(P,DV ). By (a), P ∈addADV . Hence,

BB = HomA(P, P ) ∈addB HomA(P,DV ) =addB D(V ⊗A P ). (30)

Hence DB ∈ addB V ⊗A P . So, V ⊗A P is a right (B,R)-cogenerator. In the same fashion, by (a)
V ∈ addADP . Consequently, CC = HomA(V, V ) ∈ addC HomA(V,DP ) = addC D(V ⊗A P ). Then,
V ⊗A P is a left (C,R)-cogenerator. Therefore, it holds the double centralizer property on V ⊗A P
between C and B. By Lemma 3.19 (c) and Lemma 3.18 (c), (b) follows.

Since P ∈ A-proj there exists s > 0 such that As ' P ⊕ K as left A-modules. Thus, as right
A-modules,

As ' HomA(A,AA)s ' HomA(As, AA) ' HomA(P ⊕K,AA) ' HomA(P,AA)⊕HomA(K,AA). (31)

Therefore, as right B-modules

P s ' As ⊗A P ' HomA(P,AA)⊕HomA(K,AA)⊗A P ' HomA(P,AA)⊗A P ⊕HomA(K,AA)⊗A P
' HomA(P, P )⊕HomA(K,AA)⊗A P = B ⊕HomA(K,AA)⊗A P. (32)

Hence, P is a right B-generator. In the same fashion, V is a left C-generator.
Since V is projective as right A-module, there exists t > 0 such that At ' V ⊕K ′ as right A-modules.

So, as right B-modules,

P t ' At ⊗A P ' (V ⊕K ′)⊗A P ' V ⊗A P ⊕K ′ ⊗A P. (33)

Hence V ⊗A P ∈addB P . In particular, by (b) P is also a right (B,R)-cogenerator. In the same way, V
is a left (C,R)-cogenerator. This completes the proof for (c) and (d).

We claim that ΦX and δX are compatible with direct sums. Let X = X1 ⊕ X2 ∈ A-mod. Denote
by ki the canonical injections and πi the canonical projections i = 1, 2. This follows from the following
commutative diagram
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HomA(V,D(X1 ⊕X2))⊗C V D(X1 ⊕X2)

HomA(V,DX1)⊗C V ⊕HomA(V,DX2)⊗C V DX1 ⊕DX2

(Dk1◦−,Dk2◦−)⊗C idV

ΦX1⊕X2

(Dk1,Dk2)

ΦX1
⊕ΦX2

.

Since both columns are isomorphisms it follows our claim. The reasoning for δX is analogous.
Now since ΦDV is the isomorphism HomA(V,DDV )⊗CV ' HomA(V, V )⊗CV ' C⊗CV ' V ' DDV

it follows that ΦX is an isomorphism for any X ∈addDV =addP .

We should remark that the statement of Theorem 3.21 is a generalization of (5.1) of [Tac73].

Remark 3.22. The canonical map Φ: HomA(V, Y ) ⊗C V → Y is an A-isomorphism for any Y ∈
AddA(V ). This follows from the fact that the tensor product commutes with arbitrary coproducts and
since V is a finitely generated A-projective module the Hom functor HomA(V,−) commutes with arbitrary
coproducts (see [Zim14, Lemma 4.1.9]). Hence we can apply the same argument as in Lemma 3.21. The
dual statement also holds for the canonical maps δ.

The importance of these canonical maps ΦX and αX stems from the following theorem.

Proposition 3.23. Let (A,P, V ) be a RQF3 algebra. Denote C = EndA(V ), B = EndA(P )op.
Let X ∈ A-mod∩R-proj and let Y ∈ mod-A ∩R-proj, then:

(a) domdim(A,R)X ≥ 1 if and only if the canonical map ΦX : HomA(V,DX) ⊗C V → DX is an
epimorphism.

(b) If domdim(A,R)X ≥ 1, then αX : X → HomC(V, V ⊗A X) is an (A,R)-monomorphism. Converse
holds if HomA(V,DX)⊗C V ∈ R-proj.

(c) domdim(A,R) Y ≥ 1 if and only if the canonical map δY : P ⊗B HomA(P,DY )→ DY is an epimor-
phism.

(d) If domdim(A,R) Y ≥ 1, then αY : Y → HomB(P, Y ⊗A P ) is a right (A,R)-monomorphism. Con-
verse holds if P ⊗B HomA(P,DY ) ∈ R-proj.

(e) The following assertions are equivalent:

(i) domdim(A,R)X ≥ 2;

(ii) The canonical map ΦX : HomA(V,DX)⊗C V → DX is a right A-isomorphism;

(iii) HomA(V,DX) ⊗C V ∈ R-proj and the canonical map αX : X → HomC(V, V ⊗A X) is a left
A-isomorphism.

(f) The following assertions are equivalent:

(i) domdim(A,R) Y ≥ 2;

(ii) The canonical map δY : P ⊗B HomA(P,DY )→ DY is a left A-isomorphism;

(iii) HomA(V,DX)⊗C V ∈ R-proj and the canonical map αY : Y → HomB(P, Y ⊗A P ) is a right
A-isomorphism.

Proof. (a). Assume that domdim(A,R)X ≥ 1. Then, there exists an (A,R)-monomorphism f : X → X0

with X0 ∈addDV =addP . In particular, Df is a surjective map. Applying HomA(V,D−)⊗C V yields
the following diagram with exact rows
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HomA(V,DX0)⊗C V HomA(V,DX)⊗C V 0

DX0 DX 0

HomA(V ,Df)⊗C idV

ΦX0 ΦX

Df

Hence ΦX is surjective because Df ◦ ΦX0 is. Conversely, assume that ΦX is an epimorphism.
Observe that HomC(V,M) is an A-projective (A,R)-injective left module for any finitely generated left

C-module M being (C,R)-injective and R-projective. In fact, HomC(V,DC) ' HomR(C⊗C V,R) ' DV
is an A-projective (A,R)-injective left module. Moreover, every (A,R)-injective R-projective module
belongs to addC DC, so HomC(V,M) ∈ A-proj∩addADA.

Consider a C-projective presentation P0
g−→ HomA(V,DX)→ 0. The functor −⊗C V is right exact, so

g⊗C idV is surjective. So, ΦX ◦ g⊗C idV : P0 ⊗C V → DX is surjective, by assumption. As X ∈ R-proj,
DX ∈ R-proj and consequently, ΦX ◦ g ⊗C idV is a right (A,R)-epimorphism. So, applying D yields an
(A,R)-monomorphism X → D(P0 ⊗C V ) ' HomC(V,DP0). Hence domdim(A,R)X ≥ 1.

(b). We can relate the maps ΦX and αX using the following commutative diagram

HomC(V, V ⊗A X) HomC(V, V ⊗A DDX) HomC(V,DHomA(V,DX))

D(DDHomA(V,DX)⊗C V )

X DDX D(HomA(V,DX)⊗C V )

HomC(V ,V⊗AwX)

'

HomC(V ,ιV ,DX)

'
κV ,D HomA(V ,DX)'

D(wHomA(V , DX)⊗C idV )'

αX

wX

'
DΦX

(34)

Here wX denotes the natural transformation from the identity to the double dual functor. As X ∈ R-proj
and HomA(V,DX) ∈ R-proj wX and wHomA(V,DX) are isomorphisms. The isomorphism ιV,DX and
κV ,HomA(V ,DX) are according to Proposition 2.1.

The diagram 34 is commutative because

DΦX ◦ wX(x)(f ⊗ v) = wX(x) ◦ ΦX(f ⊗ v) = wX(x)(f(v)) (35)

D(wHomA(V,DX) ⊗C idV ) ◦ κV,DHomA(V,DX) ◦HomC(V, ιV,DX) ◦HomC(V, V ⊗A wX) ◦ αX(x)(f ⊗ v) =
(36)

= κV,DHomA(V,DX)(ιV,DX ◦ V ⊗A wX ◦ αX(x)) ◦ wHomA(V,DX) ⊗C idV (f ⊗ v) = (37)

= wHomA(V,DX)(f)(ιV,DX ◦ V ⊗A wX ◦ αX(x)(v)) = wHomA(V,DX)(f)(ιV,DX(v ⊗ wX(x))) = (38)

= ιV,DX(v ⊗ wX(x))(f) = wX(x)(f(v)), x ∈ X, f ⊗ v ∈ HomA(V,DX)⊗C V. (39)

Assume that domdim(A,R)X ≥ 1. Then, by (a) ΦX is an (A,R)-epimorphism. Thus, DΦX is an
(A,R)-monomorphism. By diagram (34), αX is an (A,R)-monomorphism. Assume now that αX is an
(A,R)-monomorphism and HomA(V,DX)⊗C V ∈ R-proj. Then, DαX is an (A,R)-epi. Applying D to
(34), we deduce that DDΦX is surjective. Because of HomA(V,DX)⊗C V ∈ R-proj wHomA(V,DX)⊗CV is
an isomorphism. Thus, wDX ◦ ΦX = DDΦX ◦ wHomA(V,DX)⊗CV is surjective. Since DX ∈ R-proj, ΦX
is surjective. By (a), domdim(A,R)X ≥ 1.

The assertions (c) and (d) are analogous to (a) and (b), respectively.

(e). Assume that (i) holds. By definition, there exists an (A,R)-exact sequence 0→ X
ε0−→ P0

ε1−→ P1

with P0, P1 ∈addP . Applying D yields the exact sequence

DP1
Dε1−−→ DP0

Dε0−−→ X → 0. (40)

The functor HomA(V,−)⊗CV is right exact, hence applying HomA(V,−)⊗CV to (40) yields the following
commutative diagram with exact rows
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DP1 DP0 DX 0

HomA(V,DP1)⊗C V HomA(V,DP0)⊗C V HomA(V,DX)⊗C V 0

Dε1 Dε0

HomA(V ,Dε1)⊗CV

ΦP1

HomA(V ,Dε0)⊗CV

ΦP0
ΦX .

By Lemma 3.21, ΦP0
,ΦP1

are isomorphisms. By diagram chasing we deduce that ΦX is an isomorphism.
So, (ii) holds.

Assume that (ii) holds. ΦX induces the isomorphism as R-modules HomA(V,DX) ⊗C V ' DX ∈
R-proj. In particular, DΦX is an isomorphism. Using diagram (34), we deduce that αX is an isomor-
phism. Thus, (iii) follows. Now consider a C-projective resolution for HomA(V,DX), P1 → P0 →
HomA(V,DX)→ 0. Applying −⊗C V we obtain the exact sequence

P1 ⊗C V → P0 ⊗C V → HomA(V,DX)⊗C V → 0. (41)

Since ΦX and X ∈ R-proj is an isomorphism this yields an (A,R)-exact sequence

P1 ⊗C V → P0 ⊗C V → DX → 0. (42)

Finally, applying D yields an (A,R)-exact sequence 0→ X → D(P0 ⊗C V )→ D(P1 ⊗C V ). As we have
seen D(Pi ⊗C V ) ∈ A-proj∩addDA, i = 1, 2, therefore domdim(A,R)X ≥ 2. So, (i) holds.

Assume that (iii) holds. By diagram (34), DΦX is an isomorphism. Since HomA(V,DX) ⊗C V ∈
R-proj wHomA(V,DX)⊗CV is an isomorphism. So, wDX ◦ ΦX = DDΦX ◦ wHomA(V,DX)⊗CV is an isomor-
phism. Thus, (ii) follows.

The argument for (f) is analogous to (e).

Here we can see that for a commutative ring, a module having relative dominant dimension at least
two is equivalent to a stronger type of the double centralizer property DV ⊗C V ' DA, which over fields
is exactly the double centralizer property EndC(V )op ' A.

This situation rises the question: in which situations can the R-module DV ⊗C V be at least R-
projective? The following lemma answers this question for RQF3 algebras with left or right relative
dominant dimension greater or equal than two.

The next result is a consequence of the following lemma.

Lemma 3.24. Let D be a projective Noetherian R-algebra. Let X be a left D-progenerator and E =
EndD(X)op. Consider the equivalence functors F = HomD(X,−) : D-mod→ E-mod and
G = HomD(HomD(X,D),−) : mod-D → mod-E. Then, for any M ∈ mod-D, N ∈ D-mod, addR(M ⊗D
N) =addR(GM ⊗E FN).

Proof. By Morita theory,

GM ⊗E FN ' HomD(HomD(X,D),M)⊗E HomD(X,N) 'M ⊗D HomD(HomD(X,M), D)⊗E HomD(X,D)⊗D N

'M ⊗D X ⊗E HomD(X,D)⊗D N 'M ⊗D X ⊗E HomE(X,E)⊗D N (43)

'M ⊗D HomE(X,X)⊗D N 'M ⊗D D ⊗D N 'M ⊗D N.

Lemma 3.25. Let (A,P, V ) be a RQF3 algebra. Denote C = EndA(V ), B = EndA(P )op.
If domdim(A,R) AA ≥ 2 or domdim(A,R)AA ≥ 2, then DV ⊗C V ∈ R-proj and P ⊗B DP ∈ R-proj.

Proof. By Lemma 3.21(b), C ' EndB(D(V ⊗A P )) with D(V ⊗A P ) a left B-progenerator. Thus,
F = HomB(D(V ⊗A P ),−) and G = HomB(HomB(D(V ⊗A P ), B),−). Note that by Lemma 3.19(a),

FDP = HomB(D(V ⊗A P ), DP ) ' HomB(P, V ⊗A P ) ' V, (44)

GP ' HomB(HomB(D(V ⊗A P ), B), DDP ) ' HomR(HomB(D(V ⊗A P ), B)⊗B DP,R) (45)

' DHomB(D(V ⊗A P ), DP ) ' DHomB(P, V ⊗A P ) ' DV (46)
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The last isomorphism follows from Lemma 3.19. Consequently,

addR(P ⊗B DP ) =addR(GP ⊗C FDP ) =addR(DV ⊗C V ).

If domdim (A,R)AA ≥ 2, then according to Proposition 3.23(e),

DV ⊗C V ' HomA(V,DA)⊗C V ' DA ∈ R-proj . (47)

If domdim (A,R)AA ≥ 2, then according to Proposition 3.23(f),

P ⊗B DP ' P ⊗B HomA(P,DA) ' DA ∈ R-proj .

4 Relative Morita-Tachikawa correspondence

For finite dimensional algebras the Morita-Tachikawa correspondence states that every finite dimensional
algebra with dominant dimension greater or equal to two is the endomorphism algebra of a generator-
cogenerator. In this integral situation, there are two situations worth distinguishing. The case where the
ground ring is a regular Noetherian ring with Krull dimension one (Theorem 4.3) and the general case
where we do not look at the Krull dimension of the ground ring. We will present in the following the
relative version of this statement now for projective Noetherian R-algebras where R is a commutative
Noetherian ring (not necessarily regular).

Theorem 4.1 (General case). Let R be a commutative Noetherian ring. There is a bijection:(B,M) :

B a projective
Noetherian R-algebra,

M a B-generator (B,R)-cogenerator,
M ∈ R-proj,

DM ⊗B M ∈ R-proj


/
∼1←→

A :

A a projective Noetherian
R-algebra with

domdim(A,R) AA ≥ 2,
domdim(A,R)AA ≥ 2


/
∼2

In this notation, A ∼2 A
′ if and only if A and A′ are isomorphic, whereas, (B,M) ∼1 (B′,M ′) if and

only if there is an equivalence of categories F : B-mod→ B′-mod such that M ′ = FM .

(B,M) 7→A = EndB(M)op

(EndA(N), N)←[A

where N is an A-projective (A,R)-injective-strongly faithful right module.

Proof. It is immediate that ∼1 is an equivalence relation. Let A be a projective Noetherian R-algebra with
right and left relative dominant dimension greater or equal than two. Hence, by definition, there exists
P ∈ A-mod∩R-proj and V ∈ mod-A∩R-proj such that (A,P, V ) is a RQF3 algebra. Let B = EndA(V ).
Since V is an A-projective right module B is a projective Noetherian R-algebra. Since R is Noetherian,
it follows that B is Noetherian. By Lemma 3.21(d), V is a left B-generator (B,R)-cogenerator and
R-projective. By Lemma 3.25, DV ⊗B V ∈ R-proj. Furthermore, by Proposition 3.23, there holds the
double centralizer property A ' EndB(V )op. If there exists another pair (P ′, V ′) such that (A,P ′, V ′) is
RQF3, then we deduce by Lemma 3.7 that addA V =addA V

′. So, (EndA(V ′), V ′) ∼1 (B, V ).
Conversely, let (B,M) be a pair such that B is a projective Noetherian R-algebra and M is a B-

generator (B,R)-cogenerator satisfying M,DM ⊗BM ∈ R-proj. Define A = EndB(M)op. Since DM ⊗R
M , it follows that A = HomB(M,M) ' D(DM ⊗B M) ∈ R-proj. Thus, A is a projective Noetherian
R-algebra. As M is a B-generator M t ' B⊕K. In particular, there exists a surjective B-homomorphism
φ : M t � B for some t > 0. Let πj ∈ HomB(M t,M) and kj ∈ HomB(M,M t), 1 ≤ j ≤ t, be the canonical
surjections and injections, respectively. In particular, 1B =

∑
j φ ◦ kj(mj) for some mj ∈ M , 1 ≤ j ≤ t.
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For any x ∈M , define hx ∈ HomB(B,M) satisfying hx(1B) = x. Then, tx ◦ φ ◦ kj ∈ HomB(M,M) = A,
1 ≤ j ≤ t. Then, for any x ∈M ,

x = tx(1B) = tx(
∑
j

φ ◦ kj(mj)) =
∑
j

tx ◦ φ ◦ kj(mj) =
∑
j

mj · tx ◦ φ ◦ kj . (48)

This shows that M is finitely generated as right A-module.
As a result of M being a B-generator, we can write

At ' HomB(M,MA)t ' HomB(M t,MA) ' HomB(B ⊕K,MA) ' HomB(B,MA)⊕HomB(K,MA)

'M ⊕HomB(K,MA). (49)

Hence, M is projective as right A-module. On the other hand, as M is a (B,R)-cogenerator, we can
write

As ' HomB(MA,M)s ' HomB(MA,M
s) ' HomB(MA, DB ⊕K ′) ' HomB(MA, DB)⊕HomB(M,K ′)

' HomB(B,DM)⊕HomB(M,K ′) ' DM ⊕HomB(M,K ′) (50)

for some s > 0 and K ′ ∈ B-mod. Therefore, DM is an A-projective left module, and consequently, M is
an (A,R)-injective right module. Hence, M is an A-projective (A,R)-injective right module. Consider a
left B-projective resolution for M , P1 → P0 →M → 0. Due to DM ⊗BM ∈ R-proj applying DM ⊗B −
yields the (A,R)-exact sequence

DM ⊗B P1 → DM ⊗B P0 → DM ⊗B M → 0. (51)

Now applying D yields the right (A,R)-exact sequence

0→ A→ D(DM ⊗B P0)→ D(DM ⊗A P1). (52)

Observe that D(DM ⊗B Pi) ' HomB(Pi,M) ∈ addM , i = 1, 2. Hence the (A,R)-monomorphism
A→ D(DM ⊗B P0) makes M an (A,R)-strongly faithful module and (52) implies domdim(A,R)AA ≥ 2.
Consider now a right B-projective resolution for DM , Q1 → Q0 → DM → 0. Applying −⊗B M yields
the (A,R)-exact sequence

Q1 ⊗B M → Q0 ⊗B M → DM ⊗B M → 0. (53)

Applying D we obtain the (A,R)-exact sequence

0→ A→ D(Q0 ⊗B M)→ D(Q1 ⊗B M). (54)

Here D(Qi ⊗B M) ' HomB(Qi, DM) ∈ addDM . Therefore, (54) yields that domdim(A,R) AA ≥ 2 and
DM is an (A,R)-strongly faithful module.

As generators satisfy the double centralizer property we have that B ' EndA(M). If (B,M) '1

(B′,M ′), then by Morita theory, A = EndB(M)op ' EndB′(M
′). This concludes the proof.

We should emphasize the importance of R being a commutative Noetherian ring in the proof of
the relative Morita-Tachikawa correspondence. Furthermore, we remark that using finitely generated
modules in Definition 3.1 of relative dominant dimension instead of general modules is no mistake. One
of the reasons is that the Hom functors do not preserve in general arbitrary direct sums. Consequently,
the techniques employed in relative Morita-Tachikawa correspondence would not hold in such a general
setting.

Moreover, the following result is a consequence of equation (48). This result goes back to [Mor58].

Corollary 4.2. Let B be a projective Noetherian R-algebra. Let M be a generator in B-Mod. Then, M
is finitely generated as EndB(M)op-module.
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Therefore, it is not expected that a version of Morita-Tachikawa correspondence can hold in general
for arbitrary commutative non-Noetherian rings. Nonetheless, if such version happens to exist it should
involve at very least compact modules in order to solve the problems of Hom regarding direct sums.

The surprise in this relative version is that we are only interested in the generators relative cogenerators
that satisfy DM ⊗BM ∈ R-proj. Modules are faithful over its endomorphism algebras. The importance
of the property DM⊗BM ∈ R-proj lies on the fact that this is a sufficient condition for a given B-module
M to be strongly faithful over its endomorphism algebra. Later, we will see a characterization of this
property and what it means for the endomorphism algebra EndB(M) in terms of base change properties.

4.1 Relative Morita-Tachikawa correspondence in case of Krull dimension
one

For regular commutative Noetherian rings with Krull dimension less or equal to one, we can drop the
condition DM ⊗BM ∈ R-proj in the relative Morita-Tachikawa correspondence and we can reformulate
the relative Morita-Tachikawa correspondence in the following way.

Theorem 4.3. Let R be a commutative regular Noetherian ring with Krull dimension less than or equal
to one. There is a bijection between

(B,M) :
B a projective Noetherian
R-algebra, M ∈ R-proj

M a B-generator (B,R)-cogenerator


/
∼1←→


A :

A a projective
Noetherian R-algebra with

domdim(A,R) AA ≥ 1,
domdim(A,R)AA ≥ 1,

all (A,R)-injective-strongly faithful
projective modules

satisfy the
double centralizer property



/
∼2

In this notation, A ∼2 A
′ if and only if A and A′ are isomorphic, whereas, (B,M) ∼1 (B′,M ′) if and

only if there is an equivalence of categories F : B-mod→ B′-mod such that M ′ = FM .

(B,M) 7→A = EndB(M)op

(EndA(N), N)←[A

where N is an A-projective (A,R)-injective-strongly faithful right module.

Proof. Let A be a projective Noetherian R-algebra with domdim(A,R)AA ≥ 1, domdim(A,R) AA ≥ 1 and
all projective (A,R)-injective-strongly faithful modules satisfy the double centralizer property. Hence,
there exists P ∈ A-mod and V ∈ mod-A such that (A,P, V ) is a RQF3 algebra. Define B = EndA(V ).
As V is an A-projective right module, B is a projective Noetherian R-algebra. By Lemma 3.21, V is
a left B-generator (B,R)-cogenerator. By assumption, V satisfies the double centralizer property, thus
A ' EndB(V )op. By the same argument as in relative Morita-Tachikawa correspondence, the mapping
← [ is well defined.

Conversely, let (B,M) with M ∈ B-mod∩R-proj a B-generator (B,R)-cogenerator. Define A =
EndB(M)op. Note that A = HomB(M,M) ⊂ HomR(M,M) ∈addRM . Since R has Krull dimension less
or equal than one, and A is an R-submodule of a projective then A is projective as R-module. Thus, A is
a projective NoetherianR-algebra. As in the proof of Theorem 4.1, M is an A-projective (A,R)-injective
finitely generated module that satisfies the double centralizer property. Consider a projective resolution
for M , P1 → P0 →M → 0. Applying DM ⊗B − we get the exact sequence

DM ⊗B P1 → DM ⊗B P0 → DM ⊗B M → 0. (55)

Now, applying D yields the following commutative diagram
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0 A D(DM ⊗B P0) D(DM ⊗B P1)

0 A D(DM ⊗B P0) coker 0

.

By Snake Lemma, the map coker→ D(DM⊗BP1) ' HomB(P1,M) is a monomorphism and HomB(P1,M) ∈
addM . As dimR ≤ 1, coker ∈ R-proj. Thus, the monomorphism A → D(DM ⊗B P0) is an (A,R)-
monomorphism. It follows that domdim (A,R)AA ≥ 1. Using a projective resolution for DM and
applying D ◦ − ⊗B M we deduce that domdim (A,R)AA ≥ 1. In particular, (A,DM,M) is a RQF3
algebra and there exists an A-exact sequence 0→ A→ X0 → X1, with X0, X1 ∈addDM . Now assume
that T is another right projective (A,R)-injective-strongly faithful module. Then, (A,DM,T ) is a RQF3
algebra. By Lemma 3.21(a), addAM = addA T . Denote by C the endomorphism algebra EndA(T ). By
Morita theory, (C, T ) ∼1 (B,M). Hence, A ' EndB(M)op ' EndC(T )op. So, all T satisfies the double
centralizer property between C and A.

As we will see in Corollary 6.6, in the right hand side of Theorem 4.3 it is enough to consider only
the dominant dimension of the regular left module or only the dominant dimension of the regular right
module.

4.2 Splitting map between endomorphism algebras

In general, we know very little about the splitness over R of the natural inclusion

EndC(V )→ EndR(V ) (56)

even in the case where V is a left C-generator. A relation between this property and relative dominant
dimension can be found in the next proposition.

Proposition 4.4. Let (A,P, V ) be a RQF3 algebra. Fix C = EndA(V ). The following assertions hold.

(a) If domdim(A,R) ≥ 2, then the canonical inclusion

i : EndC(V ) ↪→ EndR(V ) (57)

splits over R.

(b) Assume also that the splitting map τ : EndR(V )→ EndC(V ) satisfies the following two properties:

τ(h ◦ g) = h ◦ τ(g), τ(g ◦ h) = τ(g) ◦ h, g ∈ EndR(V ), h ∈ EndC(V ). (58)

Let δ : Mi+1 → Mi → Mi−1 be a (C,R)-exact sequence. If HomC(V,Mi+1) → HomC(V,Mi) →
HomC(V,Mi−1) is exact and Mi ∈ R-proj, then the sequence HomC(V, δ) is (A,R)-exact.

Proof. By Proposition 3.23, ΦA : DV ⊗C V → DA is an isomorphism. In particular, DV ⊗C V ∈ R-proj.
Consider the canonical R-epimorphism ε : DV ⊗RV → DV ⊗C V , given by f⊗v 7→ f⊗v, f ∈ DV, v ∈ V .
So, ε splits over R. Using the commutativity of the diagram with bijective columns

0 D(DV ⊗C V ) D(DV ⊗R V )

0 HomC(V,DDV ) HomR(V,DDV )

0 HomC(V, V ) HomR(V, V )

Dε

' '

i

' '
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we obtain that the natural inclusion i splits over R.
Assume that the splitting map τ : EndR(V )→ EndC(V ) satisfies the following two properties:

τ(h ◦ g) = h ◦ τ(g), τ(g ◦ h) = τ(g) ◦ h, g ∈ EndR(V ), h ∈ EndC(V ). (59)

Let Mi+1
fi+1−−−→ Mi

fi−→ Mi−1 be a (C,R)-exact sequence. Hence, there are maps hj ∈ HomR(Mj ,Mj+1)
satisfying fi+1 ◦ hi + hi−1 ◦ fi = idMi

, j = i, i− 1.
Since V is C-generator there exists a surjective π(i) : V ti → Mi. As Mi ∈ R-proj, there exists

k(i) ∈ HomR(Mi, V
ti) such that π(i) ◦ k(i) = idMi

. Let π
(i)
j and k

(i)
j be the canonical surjections and

inclusions of the direct sum V ti . Since V is a (C,R)-cogenerator, Mi can be embedded in V s through a
map l(i). Denote by φz and νz the canonical projections and injections of the direct sum V s. Define the

map Hi : HomC(V,Mi)→ HomC(V,Mi+1), given by Hi(g) =
∑
j π

(i+1)k
(i+1)
j τ(π

(i+1)
j k(i+1)hig) for each

g ∈ HomC(V,Mi). For any g ∈ HomC(V,Mi),

l(i)(HomC(V, fi+1 ◦Hi +Hi−1 ◦HomC(V, fi)))(g) = l(i)(fi+1 ◦Hi(g) +Hi−1(fi ◦ g)) (60)

=
∑
z,j

νz(φzl
(i)fi+1π

(i+1)k
(i+1)
j τ(π

(i+1)
j k(i+1)hig) + φzl

(i)π(i)k
(i)
j τ(π

(i)
j k(i)hi−1fig)) (61)

=
∑
z

νz(τ(φzl
(i)fi+1π

(i+1)
∑
j

k
(i+1)
j π

(i+1)
j hig) + τ(φzl

(i)π(i)
∑
j

k
(i)
j π

(i)
j k(i)hi−1fig)) (62)

=
∑
z

νzτ(φzl
(i)fi+1hig + φzl

(i)hi−1fig) =
∑
z

νzτ(φzl
(i)g) =

∑
z

νzφzl
(i)g = l(i)g. (63)

Therefore, HomC(V, fi+1 ◦Hi + Hi−1 ◦ HomC(V, fi) = idHomC(V,Mi). Analogously, we can see the same
statement holds for the functor HomC(−, V ).

The existence of a map τ in the conditions of Proposition 4.4(b) may not exist in general, otherwise,
every module should satisfy the property HomA(V,DM) ⊗C V ∈ R-proj. However, such a map τ with
the given properties exists for relative separable algebras (see for example [Hat63, 2.2]).

5 Mueller’s characterization of relative dominant dimension

We will now study how to compute the relative dominant dimension of a module in terms of the homology
over the endomorphism algebra of a projective relative injective strongly faithful module (Theorem 5.2).
This will be the analogue of Mueller’s characterization of dominant dimension. It turns out that in the
integral setup, vanishing of cohomology is weaker than vanishing of homology. Actually, we will see that
it is the global dimension of the ground ring which causes obstructions suggesting the use of Tor functors
instead of Ext functors to study relative dominant dimension (Theorem 5.2, Proposition 5.5 and Theorem
5.6). In general, without further assumptions, the larger the global dimension of the ground ring, the less
vanishing of Ext groups tell us about the value of relative dominant dimension of a module. Similarly to
the classical case, thanks to the Mueller’s characterization of relative dominant dimension we can deduce
several additional properties of relative dominant dimension. For instance, we can establish the left and
right symmetry of relative dominant dimension of relative QF-3 algebras (Corollary 5.9) and how relative
dominant dimension behaves on short (A,R)-exact sequences (Lemma 5.12).

The following technical lemma will be useful for the relative Mueller theorem.

Lemma 5.1. Consider the following commutative diagram with one exact row

X0 X1 X2 X3

Y

α0 α1

ε

α2

t
.
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The following assertions hold.

(i) If ε is surjective and ε ◦ α0 = 0, then t is mono.

(ii) If t is mono and α2 ◦ t = 0, then ε is surjective.

Proof. (i). Let y ∈ ker t. Since ε is surjective, we can write y = ε(x) for some x ∈ X1. Thus,
α1(x) = tε(x) = t(y) = 0. So, x ∈ imα0 = kerα1. Hence, y = ε(α0(z)) = 0 for some z ∈ X0. Hence, t is
injective.

(ii). Let y ∈ Y . Then, t(y) ∈ kerα2 =imα1. So, we can write t(y) = α1(x) = tε(x) for some x ∈ X1.
As t is injective, y = ε(x).

Let X ∈ A-mod. Denote by Ωi(X,P •) the i-th syzygy of X with respect to an A-projective resolution
P •. Naturally, Ω0(X,P •) ' X for any P • and Ωi(X,P •) ∈ R-proj whenever X ∈ R-proj.

Theorem 5.2. Let (A,P, V ) be a RQF3 algebra. Fix C = EndA(V ). For any R-projective left A-module
M , the following assertions are equivalent.

(i) domdim(A,R)M ≥ n ≥ 2;

(ii) ΦM : HomA(V,DM)⊗CV → DM is an isomorphism and TorCi (HomA(V,DM), V ) = 0, 1 ≤ i ≤ n− 2;

(iii) αM : M → HomC(V, V⊗AM) is an isomorphism, Ωi(HomA(V,DM), P •)⊗CV ∈ R-proj, 0 ≤ i ≤ n− 2
for every C-projective resolution P • of HomA(V,DM) and ExtiC(V, V ⊗AM) = 0, 1 ≤ i ≤ n− 2.

Proof. (i) =⇒ (ii). By Proposition 3.23, ΦM is an isomorphism. By definition, there exists an (A,R)-
exact sequence

0→M
ε−→ X0

f1−→ X1
f2−→ X2 → · · · → Xn−1, (64)

with Xi an A-projective (A,R)-injective module. The functor HomA(V,−) is exact, and since D preserves
(A,R)-exact sequences, applying HomA(V,D−) yields the exact sequence

HomA(V,DXn−1)
HomA(V ,Dfn−1)−−−−−−−−−−−→ HomA(V,DXn−2)→ · · · → HomA(V,DX0)

HomA(V,Dε)−−−−−−−−→ HomA(V,DM)→ 0.
(65)

As HomA(V,DXi) ∈ add HomA(V, V ) = C-proj, we can extend (65) to a C-projective resolution of
HomA(V,DM), P • where Pi = HomA(V,DXi), 0 ≤ i ≤ n − 1. Applying − ⊗C V we get the following
commutative diagram with the top row exact.

DXn−1 DXn−2 · · · DX0 DM

HomA(V,DXn−1)⊗C V HomA(V,DXn−2)⊗C V · · · HomA(V,DX0)⊗C V HomA(V,DM)⊗C V

Dfn−1 Dε

ΦXn−1

HomA(V ,Dfn−1)⊗CV

ΦXn−2
ΦX0

HomA(V ,Dε)⊗CV

ΦM .

According to Lemma 3.21, the maps ΦM and ΦXi
, i = 1, . . . , n− 1 are isomorphisms. Thus, the bottom

row is exact. Thus,

TorCi (HomA(V,DM), V ) = ker HomA(V,Dfi)⊗C V/im HomA(V,Dfi+1)⊗C V = 0, 1 ≤ i ≤ n− 2.

(ii) =⇒ (iii). By Proposition 3.23, HomA(V,DM)⊗C V ' D(V ⊗AM)⊗C V ∈ R-proj and αM is
an isomorphism. Let

· · · → P2
p2−→ P1

p1−→ P0
p0−→ D(V ⊗AM)→ 0. (66)
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be an arbitrary C-projective resolution of D(V ⊗AM). In particular, for every 1 ≤ i ≤ n − 2, we have
the following exact sequence

0→ Ωi(HomA(V,DM), P •)
ki−→ Pi−1

pi−1−−−→ Pi−2 → · · · → P0 → D(V ⊗AM)→ 0, (67)

where P • is the deleted projective resolution of (66). It follows from TorCi (HomA(V,DM), V ) = 0,
1 ≤ i ≤ n− 2 the existence of the following exact sequence and factorization of pi ⊗C V

Pn−1 ⊗C V
pn−1⊗CV−−−−−−→ Pn−2 ⊗C V → · · · → P0 ⊗C V → D(V ⊗AM)⊗C V → 0, (68)

Pi+1 ⊗C V Pi ⊗C V Pi−1 ⊗C V Pi−2 ⊗C V

Ωi(HomA(V,DM), P •)⊗C V

pi+1⊗CV pi⊗CV

εi⊗CV

pi−1⊗CV

ki⊗CV ,

where εi is the map given in the factorization (epi, mono) kiεi = pi. For the case i = 1, we can take
P−1 = D(V ⊗AM). Observe that 0 = pipi+1 = kiεipi+1. Hence, εipi+1 = 0 because ki is a mono.
Consequently, εi ⊗C V pi+1 ⊗C V = 0. By Lemma 5.1, ki ⊗C V is a monomorphism and thus

Ωi(HomA(V,DM), P •)⊗C V ' im(pi ⊗C V ) = ker(pi−1 ⊗C V ) ∈ R-proj (69)

since D(V ⊗A M) ⊗C V ∈ R-proj and every Pi ∈ R-proj. By Tensor-Hom adjunction there exists the
following commutative diagram

0 D(D(V ⊗AM)⊗C V ) D(P0 ⊗C V ) · · · D(Pn−1 ⊗C V )

0 HomC(V, V ⊗AM) HomC(V,DP0) · · · HomC(V,DPn−1)

' ' ' , (70)

such that every column is an isomorphism. The upper row is just the exact sequence obtained by applying
D to the (A,R)-exact sequence (68), and therefore it is exact. Now, the commutativity of diagram (70)
yields that the bottom row of (70) is exact. Taking into account that 0→ V ⊗AM → DP0 → DP1 → · · ·
is a (C,R)-injective resolution and V ⊗AM ∈ R-proj, the exactness of the bottom row of (70) means that
Exti(C,R)(V, V ⊗AM) = 0, 1 ≤ i ≤ n − 2. Again, since V ⊗AM ∈ R-proj and V ∈ R-proj the standard
(C,R)-projective resolution of V is a C-projective resolution of V . Therefore,

ExtiC(V, V ⊗AM) = Exti(C,R)(V, V ⊗AM) = 0, 1 ≤ i ≤ n− 2.

(iii) =⇒ (i). We shall proceed by induction on k to show that if αM : M → HomC(V, V ⊗AM) is an
isomorphism, Ωi(HomA(V,DM), P •)⊗C V ∈ R-proj, 0 ≤ i ≤ k− 2 for every C-projective resolution P •

of HomA(V,DM) and ExtiC(V, V ⊗AM) = 0 for 1 ≤ i ≤ k − 2, then domdim(A,R)M ≥ k ≥ 2. If k = 2,
then the result holds by Proposition 3.23. Assume that the result holds for a given k satisfying n > k > 2.
Assume, in addition, that αM : M → HomC(V, V ⊗AM) is an isomorphism, Ωi(HomA(V,DM), P •)⊗C
V ∈ R-proj, 0 ≤ i ≤ k−1 for every C-projective resolution P • of HomA(V,DM) and ExtiC(V, V ⊗AM) =
0, 1 ≤ i ≤ k − 1. By induction, domdim(A,R)M ≥ k. So, there exists a (A,R)-exact sequence

0→M
α0−→ X0

α1−→ X1 → · · · → Xk−1, (71)

with all Xi ∈addDV . Applying V ⊗A − yields the (C,R)-exact sequence

0→ V ⊗AM → V ⊗A X0 → V ⊗A X1 → · · · → V ⊗A Xk−1. (72)

Now, observe that, D(V ⊗A Xi) ' HomA(V,DXi) ∈ add HomA(V,DDV ) = C-proj. So, we can extend
(72) to a (C,R)-injective resolution of V ⊗AM , I•. Furthermore, we have the (epi, mono) factorization
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V ⊗A Xk−2 V ⊗A Xk−1

DΩk−1(D(V ⊗AM), D((V ⊗A X)•)

V⊗Aαk−1

ε t ,

where (V ⊗AX)• denotes the deleted (C,R)-injective resolution obtained by I•. Denote by Ω the module
DΩk−1(D(V ⊗A M), D((V ⊗A X)•). Since ExtiC(V, V ⊗A M) = Exti(C,R)(V, V ⊗A M) = 0, i ≤ k − 1
applying HomC(V,−) to the (C,R)-injective I• we obtain the exact sequence

HomC(V, V ⊗AM) HomC(V, V ⊗A X0) · · · HomC(V, V ⊗A Xk−2) HomC(V, V ⊗A Xk−1) HomC(V, Ik)

HomC(V,Ω)

HomC(V ,V⊗Aαk−1)

HomC(V ,ε)

HomC(V ,ik)

HomC(V ,t)

(73)
where HomC(V, t) is injective and ker ik = imV ⊗A αk−1. Note that 0 = ik ◦ V ⊗A αk−1 = iktε. Thus,
ikt = 0 since ε is surjective. Now, as HomC(V, ik)◦HomC(V, t) = HomC(V, ikt) = 0, it follows by Lemma
5.1(ii) that HomC(V, ε) is surjective. On the other hand,

HomC(V,Ω) ' D(Ωk−1(D(V ⊗AM), D((V ⊗A X)•)⊗C V ) ∈ R-proj . (74)

Hence, the exact sequence

0→ HomC(V, V ⊗AM)→ HomC(V, V ⊗A X0)→ · · · → HomC(V, V ⊗A Xk−2)→ HomC(V,Ω)→ 0
(75)

is (A,R)-exact. As M ' HomC(V, V ⊗A M) and each HomC(V, V ⊗A Xi) ' Xi ∈ addDV it is enough
to show that HomC(V,Ω) has relative dominant dimension greater or equal than two. In such a case,
there exists Y0, Y1 ∈addDV and an (A,R)-exact sequence 0→ HomC(V,Ω)→ Y0 → Y1. Combining this
(A,R)-exact sequence with (75) we obtain an (A,R)-exact sequence

0→M → HomC(V, V ⊗A X0)→ · · · → HomC(V, V ⊗A Xk−2)→ Y0 → Y1.

This would imply that domdim(A,R)M ≥ k + 1.
We can see that by Lemma 3.17 and by assumption on the R-projectivity of the k − 1 syzygy that

HomA(V,DHomC(V,Ω))⊗C V ' D(V ⊗A HomC(V,Ω))⊗C V ) ' D(Ω)⊗C V (76)

' Ωk−1(D(V ⊗AM), D((V ⊗A X)•)⊗C V ∈ R-proj . (77)

By Lemma 3.17 the map ξΩ is an isomorphism. Moreover,

HomC(V, ξΩ) ◦ αHomC(V,Ω)(f)(v) = ξΩ(v ⊗ f) = f(v), f ∈ HomC(V,Ω), v ∈ V. (78)

Thus, HomC(V, ξΩ) ◦ αHomC(V,Ω) = idHomC(V,Ω). It follows that αHomC(V,Ω) is an isomorphism. By
Proposition 3.23, domdim(A,R) HomC(V,Ω) ≥ 2.

Theorem 5.3. Let (A,P, V ) be a RQF3 algebra. Denote B = EndA(P )op. For any R-projective right
A-module M , the following assertions are equivalent.

(a) domdim(A,R)M ≥ n ≥ 2;

(b) δM : P⊗BHomA(P,DM)→ DM is an isomorphism and TorBi (P,HomA(P,DM)) = 0, 1 ≤ i ≤ n− 2;

(c) αM : M → HomB(P,M⊗AP ) is an isomorphism, P⊗BΩi(HomA(P,DM), Q•) ∈ R-proj, 0 ≤ i ≤ n− 2
for every left B-projective resolution Q• of HomA(P,DM) and ExtiB(P,M ⊗A P ) = 0, 1 ≤ i ≤ n−2.
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Proof. The proof is analogous to Theorem 5.2.

Remark 5.4. By Observation 3.22 we can deduce as in Theorem 5.2 that the existence of an (A,R)-exact
sequence

Yn → Yn−1 → · · · → Y1 → Y → 0, (79)

where Yi ∈ AddA V , 1 ≤ i ≤ n, for a given Y ∈ Mod-A, is equivalent to requiring Φ: HomA(V, Y )⊗C V → Y
to be an isomorphism and TorCi (HomA(V, Y ), V ) = 0, 1 ≤ i ≤ n− 2.

Comparing this version with the Mueller theorem for Artinian algebras, we can see that the functors
Tor take a more important role than Ext. Furthermore, condition (c) does not seem very practical
to use in applications since we have to test every syzygy of a projective resolution of HomA(V,DM).
However, using Ext can still be useful if we know the Krull dimension of the ground ring. Recall that
for commutative Noetherian regular rings (by definition the localization at every prime ideal is
a regular local ring) the Krull dimension coincides with the global dimension (see for example [Rot09,
Theorem 8.62, Proposition 8.60]).

Proposition 5.5. Let R be a commutative Noetherian regular ring. Let (A,P, V ) be a RQF3 algebra.
Fix C = EndA(V ) and B = EndA(P )op. Let n ≥ 2,M ∈ A-mod∩R-proj, and N ∈ mod-A ∩R-proj. The
following assertions hold.

(i) If αM : M → HomC(V, V⊗AM) is an isomorphism and ExtiC(V, V⊗AM) = 0 for every 1 ≤ i ≤ n− 2,
then domdim(A,R)M ≥ n− dimR.

(ii) If αN : N → HomB(P,N⊗AP ) is an isomorphism and ExtiB(P,N⊗AP ) = 0 for every 1 ≤ i ≤ n−2,
then domdim(A,R)N ≥ n− dimR.

Proof. If dimR ≥ n, then there is nothing to prove. Assume that n > dimR. Let j = n− dimR. Let

0→ V ⊗AM
α0−→ Y0

α1−→ Y1 → · · · (80)

be a (C,R)-injective resolution of V ⊗A M . The modules Yi can be chosen to be R-projective as well.
Since ExtiC(V, V ⊗AM) = 0, 1 ≤ i ≤ n− 2, applying HomC(V,−) yields the exact sequence

0→M ' HomC(V, V ⊗AM)
HomC(V,α0)−−−−−−−−→ HomC(V, Y0)

HomC(V,α1)−−−−−−−−→ · · · → HomC(V, Yn−1). (81)

Note that HomC(V, Yi) ∈add HomC(V,DC) =addDV =addP . Let Ci =im HomC(V, αi),∀i. The exact
sequence (81) induces the exact sequence

0→ Cj → HomC(V, Yj)→ · · · → HomC(V, Yn−2)→ Cn−1 → 0. (82)

Note that this sequence has length dimR + 1. Furthermore, since pdimR Cn−1 ≤ dimR, we must have
that Cj is R-projective. This implies that the exact sequence

0→M → HomC(V, Y0)→ · · · → HomC(V, Yj−1) (83)

is (A,R)-exact. Therefore, it follows that domdim(A,R)M ≥ j = n− dimR. (ii) is analogous to (i).

When the Krull dimension is at most one, we can formulate the Mueller theorem in the following way.

Theorem 5.6. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Let
(A,P, V ) be a RQF3 algebra. Denote C = EndA(V ). Let M ∈ A-mod∩R-proj and n ≥ 2. The following
assertions are equivalent.
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(i) domdim(A,R)M ≥ n− 1 where the (A,R)-exact sequence

0→M → X1 → · · · → Xn−1, (84)

Xi an (A,R)-injective A-projective module, can be continued to an exact sequence

0→M → X1 → · · · → Xn−1 → Y (85)

where Y is (A,R)-injective A-projective.

(ii) αM is an isomorphism and ExtiC(V, V ⊗AM) = 0, 1 ≤ i ≤ n− 2.

Proof. Assume that (ii) holds. Using Proposition 5.5, we see that domdim(A,R)M ≥ n − 1. Moreover,
using the (A,R)-exact constructed there we have

0→M → HomC(V, Y0)→ · · · → HomC(V, Yn−2)→ Cn−1 → 0. (86)

Since Cn−1 can be embedded into HomC(V, Yn−1) (i) follows.
Conversely, assume that (i) holds. Since n ≥ 2, there exists an exact sequence 0 → M → X1 → X2

where Xi ∈addDV . The functor HomC(V, V ⊗A −) is left exact, so it yields the following commutative
diagram with exact rows

0 M X1 X2

0 HomC(V, V ⊗AM) HomC(V, V ⊗A X1) HomC(V, V ⊗A X2)

αM αX1
αX2 (87)

By diagram chasing, it follows that αM is an isomorphism. Applying V ⊗A− to (85) we obtain the exact
sequence

0→ V ⊗AM → V ⊗A X1 → · · · → V ⊗A Xn−1 → V ⊗A Y. (88)

Note that by deleting V ⊗A Y we obtain a (C,R)-exact sequence. We can continue such (C,R)-exact to
a (C,R)-injective resolution of V ⊗AM . Now consider the following commutative diagram

0 M · · · Xn−1 Y

0 HomC(V, V ⊗AM) · · · HomC(V, V ⊗A Xn−1) HomC(V, V ⊗A Y )

αM' αXn−1' αY' (89)

It follows that the bottom row is exact. In particular, Ext(C,R)(V, V ⊗AM) = 0, 1 ≤ i ≤ n − 3. Notice
that by continuing the (C,R)-injective resolution we have the following commutative diagram

V ⊗A Xn−1 V ⊗A Y

V ⊗A coker X̃n

λn

ε t

ν

. (90)

Since HomC(V,−) is left exact,

ker HomC(V, ν ◦ ε) = ker HomC(V, ε) = ker HomC(V, t ◦ ε) =im HomC(V, λn−1). (91)

This last equality follows from the exactness of (89). This means that

0→ HomC(V, V ⊗AM)→ · · · → HomC(V, V ⊗A Xn−1)→ HomC(V, X̃n) (92)

is exact. So, (ii) holds.
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This method gives a hint why for Krull dimension one we can say that by continuing an (A,R)-exact
sequence of projective relative injectives to a non-(A,R)-exact sequence of projective relative injectives
is still enough to recover information about Ext. The method here used requires that at each step to
compute the exact sequence we might have to replace the projective (A,R)-injective. This happens in
general because we do not have a standard choice here unless the algebra is semiperfect. In such a case,
the projective covers can take that role.

Proposition 5.7. Let A be a semi-perfect R-algebra and a projective Noetherian R-algebra. Let M ∈
A-mod∩R-proj. Let

· · · → P1
p1−→ P0

p0−→ DM → 0 (93)

be a minimal right A-projective resolution. Then, domdim(A,R)M ≥ n if and only if for each i = 0, . . . , n− 1,
Pi is (A,R)-injective right module.

Proof. One of the implications is clear. Assume that domdim(A,R)M ≥ n. Then, there exists an (A,R)-

exact sequence 0 → M
α0−→ I0 → · · ·

αn−1−−−→ In−1, with all Ii being A-projective (A,R)-injective. Hence

applying D we obtain an exact sequence DIn−1
Dαn−1−−−−→ · · · → DI0

Dα0−−−→ DM → 0. Since P0 and DI0
are A-projective there are maps f0 ∈ HomA(P0, DI0), g0 ∈ HomA(DI0, P0) satisfying p0 ◦ g0 = Dα0 and
Dα0 ◦ f0 = p0. Hence, p0 ◦ g0 ◦ f0 = p0. Since (P0, p0) is the projective cover of DM , it follows that
g0 ◦ f0 ∈ EndA(P0) is an isomorphism. Consequently, g0 is surjective and thus, P0 is an A-summand
of DI0. In particular, P0 is (A,R)-injective. Observe that p0 ◦ g0 ◦ Dα1 = Dα0 ◦ Dα1 = 0. Hence,
im g0 ◦Dα1 ⊂ ker p0. Let x ∈ ker p0 =. Then, by the surjectivity of g0, there exists y ∈ DI0 such that
g0(y) = x. Therefore, Dα0(y) = p0(x) = 0. Thus, y ∈ kerDα0 = imDα1. So, x ∈ im g0 ◦ Dα1. We

deduced that the sequence DIn−1 → · · · → DI1
g◦Dα1−−−−→ P0

p0−→ DM → 0 is exact. Now we can proceed by
induction, where in the next step ker p0 takes the place of DM , to obtain that each Pi is an A-summand
of DIi.

To clarify, if A is not semi-perfect there is no canonical (A,R)-injective resolution to pick for a
module to compute its relative dominant dimension. For example, looking at the standard (A,R)-
injective resolution gives us no information here because if M ∈ A-mod∩R-proj has positive relative
dominant dimension and if it is free as R-module, then DA ∈add HomR(A,M) =addDA⊗RM . Hence,
the first term of the standard (A,R)-injective resolution of M I0 := HomR(A,M) cannot be projective
over A.

5.1 Further consequences

We shall now see some properties of relative dominant dimension that follow from the relative Mueller
theorem. In particular, the relative Mueller characterization applied to A takes the following form. This
result is the relative analogue of [Mue68, Lemma 3] and [Tac73, 7.5].

Theorem 5.8. Let A be an (A,P, V ) RQF3 algebra with domdim(A,R) AA ≥ 2 and domdim(A,R)AA ≥ 2.
For n ≥ 3, the following are equivalent.

(i) domdim(A,R) AA ≥ n;

(ii) TorCi (DV, V ) = 0, i = 1, . . . , n− 2;

(iii) ExtiC(V, V ) = 0, i = 1, . . . , n − 2 and Ωj(DV,Q•) ⊗C V ∈ R-proj, 0 ≤ j ≤ n − 2, for every
C-projective resolution Q• of DV ;

(iv) TorBi (P,DP ) = 0 i = 1, . . . , n− 2;
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(v) ExtiC(P, P ) = 0, i = 1, . . . , n − 2 and P ⊗B Ωj(DP,Q•) ∈ R-proj, 0 ≤ j ≤ n − 2, for every
B-projective resolution Q• of DP ;

(vi) domdim(A,R)AA ≥ n.

Proof. The implications (i)⇔ (ii)⇔ (iii) and (iv)⇔ (v)⇔ (vi) follow from Theorem 5.2 and Theorem
5.3, respectively. We will, therefore, focus on the implication (ii)⇔ (iv).

Consider a left B-projective resolution

· · · → Pn−1
fn−1−−−→ · · · f1−→ P0

f0−→ DP → 0. (94)

Applying the exact functor HomB(D(V ⊗A P ),−) we get the exact sequence

· · · → HomB(D(V ⊗A P ), Pn−1)→ · · · → HomB(D(V ⊗A P ), P0)→ HomB(D(V ⊗A P ), DP )→ 0.
(95)

Since D(V ⊗A P ) is a B-generator, each Pi ∈addD(V ⊗A P ), therefore HomB(D(V ⊗A P ), Pi) ∈ C-proj.
Also, HomB(D(V ⊗A P ), DP ) ' HomB(P, V ⊗A P ) ' V as left C-modules. Thus, (95) is a C-projective
resolution for V .

We recall that in Lemma 3.25, we saw that for

F = HomB(D(V ⊗A P ),−) and G = HomB(HomB(D(V ⊗A P ), B),−)

there was an isomorphism GM ⊗C FN ' M ⊗B N for every M ∈ mod-B and N ∈ B-mod. Since all
the isomorphisms involved are functorial, it follows that there exists a natural isomorphism of bifunctors
θ : G(−)⊗C F (−)→ id(−)⊗B id(−). In particular, the following diagram is commutative

P ⊗B Pi−1 P ⊗B Pi−2 · · · P ⊗B P0 P ⊗B DP 0

GP ⊗B FPi−1 GP ⊗B FPi−2 · · · GP ⊗C FP0 GP ⊗C FDP 0

idP ⊗Bfi idP ⊗Bf0

G idP ⊗BFfi

θP,Pi−1 ' θP,Pi−2 '
G idP ⊗CFf0

θP,P0 ' θP,DP ' .

(96)
So, the upper row is exact if and only if the bottom row is exact. Furthermore, the bottom row is exactly
the complex obtained by applying DV ⊗C − to the exact sequence (95). It follows that TorCi (DV, V ) = 0
if and only if TorBi (P,DP ) = 0.

Corollary 5.9. Let (A,P, V ) be a RQF3 algebra. Then, domdim(A,R) AA = domdim(A,R)AA.

Proof. Assume that domdim(A,R) AA ≥ 2. By Lemma 3.21, V is a left C-generator (C,R)-cogenerator. In
view of Lemma 3.25, DV ⊗C V ∈ R-proj. By Theorem 5.2, V satisfies the double centralizer property. By
Morita-Tachikawa correspondence EndC(V ) ' A has left and right relative dominant dimension greater
or equal than two. By Theorem 5.8, we have domdim(A,R)AA ≥ domdim(A,R) AA. Symmetrically,
domdim(A,R) AA ≥ domdim(A,R)AA.

Another consequence of Theorem 5.8 is that we can characterize every endomorphism algebra of
a generator relative cogenerator such that the generator remains R-projective under tensor product
over its dual. In fact, Let B be the endomorphism algebra over A of a generator (A,R)-cogenerator
such that DM ⊗A M ∈ R-proj. By relative Morita-Tachikawa, B has left and right relative dominant
dimension greater or equal than two. Now Theorem 5.8 gives that domdim(B,R) ≥ n+ 2 if and only if
TorAi (DM,M) = 0, 1 ≤ i ≤ n.

Corollary 5.10. Let (A,P, V ) be a RQF3 algebra. Let Mi ∈ A-mod∩R-proj, i ∈ I, for some finite set
I. Then,

domdim(A,R)

(⊕
i∈I

Mi

)
= inf{domdim(A,R)Mi : i ∈ I}. (97)
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Proof. Since the maps ΦX are compatible with direct sums, we get that ΦMi
is surjective/bijective for

every i ∈ I if and only if Φ⊕
i∈I

is surjective/bijective. Thus, domdim(A,R)

⊕
i∈IMi ≥ 1 (resp. 2) if and

only if domdim(A,R)Mi ≥ 1 (resp. 2) for every i ∈ I. Now since for every n

TorCn (HomA(V,D(
⊕
i∈I

Mi)), V ) ' TorCn (HomA(V,
⊕
i∈I

DMi), V ) '
⊕
i∈I

TorCn (HomA(V,DMi), V ), (98)

the result follows by Theorem 5.2.

Remark 5.11. It follows that the value of the relative dominant dimension is independent of the direct
sum decomposition of the module.

The following Lemma is another consequence of relative Mueller characterization. In the field case,
this proof is quicker using the relations between dominant dimension and the socle of the regular module
and it was first stated in [FK11b, Proposition 3.6].

Lemma 5.12. Let (A,P, V ) be a RQF3 algebra. Let M ∈ R-proj and consider the following (A,R)-exact

0→M1 →M →M2 → 0. (99)

Let n = domdim(A,R)M and ni = domdim(A,R)Mi. Then, the following holds.

(a) n ≥ min{n1, n2}.

(b) If n1 < n, then n2 = n1 − 1.

(c) (i) n1 = n =⇒ n2 ≥ n− 1.

(ii) n1 = n+ 1 =⇒ n2 ≥ n.

(iii) n1 ≥ n+ 2 =⇒ n2 = n.

(d) n < n2 =⇒ n1 = n.

(e) (i) n = n2 =⇒ n1 ≥ n2.

(ii) n = n2 + 1 =⇒ n1 ≥ n2 + 1.

(iii) n ≥ n2 + 2 =⇒ n1 = n2 + 1.

Proof. Applying D and HomA(V,D−)⊗C V we get the commutative diagram with exact rows

TorC1 (HomA(V,DM1), V ) HomA(V,DM2)⊗C V HomA(V,DM)⊗C V HomA(V,DM1)⊗C V

0 DM2 DM DM1

ΦM2 ΦM ΦM1
.

(100)
By Snake Lemma, ΦM is an epimorphism/isomorphism if ΦM1 and ΦM2 are epimorphisms/isomorphisms.
Thus, min{n1, n2} ≥ k, k ≤ 2, implies that n ≥ k. Consider the long exact sequence

TorCi (HomA(V,DM1), V )→ TorCi (HomA(V,DM), V )→ TorCi (HomA(V,DM2), V ) (101)

we obtain that if n1, n2 ≥ k ≥ 2, TorCi (HomA(V,DM1), V ) = TorCi (HomA(V,DM2), V ) = 0 for i =
1, . . . , k − 2, then TorCi (HomA(V,DM), V ) = 0. Thus, n ≥ min{n1, n2}. By Theorem 5.2, (a) follows.

(b). If n1 = 0, then ΦM1
is not surjective. By diagram chasing, if ΦM is surjective, then ΦM1

is
surjective. Thus, n > 0 implies that n1 > 0. Assume n1 = 1 and n > n1. Thus, ΦM is bijective and
ΦM1

is surjective. If ΦM2
is surjective, then by Snake Lemma, ΦM1

is also injective. This would imply
that n1 ≥ 2. So, n2 = 0. Assume now n1 ≥ 2. By Snake Lemma, ΦM2 is surjective. So, n2 ≥ 1.
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If n2 ≥ 2, then, in particular, ΦM2
is surjective. The exactness of the bottom row of (100) makes

HomA(V,DM2) ⊗C V → HomA(V,DM) ⊗C V injective. Since TorC1 (HomA(V,DM), V ) = 0 , the long
exact sequence induces that TorC1 (HomA(V,DM1), V ) = 0. This contradicts n1 = 2. Thus, n2 = 1. Now
assume that n1 ≥ 3. Thus, (100) becomes

0 HomA(V,DM2)⊗C V HomA(V,DM)⊗C V HomA(V,DM1)⊗C V

0 DM2 DM DM1

ΦM2 ΦM ΦM1
. (102)

Thus, by Snake Lemma ΦM2
is bijective. Furthermore, using the long exact sequences and as n > n1 we

deduce that

TorCi+1(HomA(V,DM1), V ) ' TorCi (HomA(V,DM2), V ), 1 ≤ i ≤ n1 − 2. (103)

Thus, n2 = n1 − 1.
Analogously, (c), (d), (e) hold.

6 Relative dominant dimension under change of rings

In this section, we will see that relative dominant dimension is stable under change of rings. Furthermore,
in practice, computations of relative dominant dimension of projective Noetherian algebras can be reduced
to computations of dominant dimension of finite dimensional algebras over algebraically closed fields
(Proposition 6.10 and Theorem 6.13). This is the interpretation of the main result of the current paper
(Theorem 6.13). We can see using change of rings that projective relative injective strongly faithful
modules are sharp generalizations of projective-injective faithful modules according to Proposition 6.4.
Using this, we can conclude the left right symmetry of the relative dominant dimension of projective
Noetherian algebras (Corollary 6.6). At this point, we also obtain a better picture of the relative Morita-
Tachikawa correspondence. The extra condition appearing on relative Morita-Tachikawa correspondence
is a manifestation of the fact that the algebras on both sides of the correspondence must satisfy a base
change property (Proposition 6.14). We will see using the main result that the Nakayama conjecture is
equivalent to the relative Nakayama conjecture for projective Noetherian algebras (Theorem 6.17).

6.1 Strongly faithful modules revisited

The proofs of the following two lemmas are technical however they are very useful to characterize strongly
faithful modules.

Lemma 6.1. Let A be a projective Noetherian R-algebra. Let V ∈ mod-A∩R-proj. Consider the A-map

δV :
⊕

g∈HomA(DV,DA)

DV → DA, given by δV (fg) = g(f), where Mg := DV for g ∈ HomA(DV,DA). For

each f ∈ DV and g ∈ HomA(DV,DA), fg denotes the function from HomA(DV,DA) to the disjoint
union of all modules Mh, h ∈ HomA(DV,DA), so that fg(h) = 0 if g 6= h and fg(g) = f . Then, δV is
surjective if and only if V is (A,R)-strongly faithful.

Proof. First, we need to check that δV is well defined. Let g ∈ HomA(DV,DA). Let θg : DV → DA be
the map given by θg(f) = g(f), f ∈ DV . This is clearly an A-map since g ∈ HomA(DV,DA). Taking
the direct sum of maps θg over g ∈ HomA(DV,DA) yields the map δV . Thus, δV is well defined.

Assume that δV is surjective. Let {f1, . . . , ft} be an R-generator set for DA. By assumption, there
exists for each 1 ≤ i ≤ t a natural number si > 0 and elements wi,j ∈ DV , gi,j ∈ HomA(DV,DA) with
j = 1, . . . , si such that

fi = δV (

si∑
j=1

(wi,j)gi,j ). (104)
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Let h ∈ DA. Then,

h =

t∑
i=1

αifi =

t∑
i=1

αiδV (

si∑
j=1

(wi,j)gi,j ) = δV (

t∑
i=1

si∑
j=1

αi(wi,j)gi,j ), αi ∈ R. (105)

Therefore, the restriction of δV to the summands indexed by gi,j 1 ≤ i ≤ t, 1 ≤ j ≤ si is surjective. Denote
by o the number of such indexes. Then, we found a surjective A-map (DV )o � DA. As DA ∈ R-proj,
this map is an (A,R)-epimorphism. Thus, applying D yields an (A,R)-monomorphism A → V o. So, V
is (A,R)-strongly faithful.

Conversely, assume that V is (A,R)-strongly faithful. Hence there is an (A,R)-monomorphism A→
V t for some t > 0. Applying D we obtain a surjective map DV t → DA. Denote this map by ε. Let kj ∈
HomA(DV,DV t) and πj ∈ HomA(DV t, DV ) be the canonical injections and projections, respectively.
Define gj = ε ◦ kj ∈ HomA(DV,DA). For every h ∈ DA, there exists y ∈ DV t such that ε(y) = h.
Therefore,

h =

t∑
j=1

ε ◦ kj ◦ πj(y) = δV (

t∑
j=1

πj(y)gj ). (106)

So, δV is surjective.

Lemma 6.2. Let A be a projective Noetherian R-algebra. For every commutative R-algebra S, and
X,Y ∈ A-mod there exists a map

θS : S
⊗
R

⊕
g∈HomA(X,Y )

X −→
⊕

h∈HomS⊗RA(S⊗RX,S⊗RY )

S ⊗R X,

given by θS(s⊗ xg) = (s⊗ x)1S⊗g.
Moreover, if X ∈ A-proj, then θR(m) is surjective for every maximal ideal m in R.

Proof. Consider the map

θ : S ×
⊕

g∈HomA(X,Y )

X →
⊕

h∈HomS⊗RA(S⊗RX,S⊗RY )

S ⊗R X,

given by θ(s, xg) = (s ⊗ x)1S⊗g for s ∈ S, x ∈ X, g ∈ HomA(X,Y ). By definition, this map is linear in
each term. Let r ∈ R. Then,

θ(rs, xg) = (rs⊗ x)1S⊗g = (s⊗ rx)1S⊗g = θ(s, (rx)g). (107)

So, θ induces uniquely the S-map θS . Assume that X ∈ A-proj. Let m be a maximal ideal in R. Then,
HomA(m)(X(m), Y (m)) ' HomA(X,Y )(m). Thus, every element in HomA(m)(X(m), Y (m)) can be writ-
ten in the form h ⊗ (r + m) = (rh) ⊗ 1R(m) for rh ∈ HomA(X,Y ). Moreover, every element in⊕

h∈HomS⊗RA(S⊗RX,S⊗RY ) S ⊗R X is the sum of elements (1R(m) ⊗ x)1R(m)⊗h = θR(m)(1R(m) ⊗ xh),

h ∈ HomA(X,Y ). This implies that θR(m) is surjective.

Proposition 6.3. Let A be a projective Noetherian R-algebra. Let V ∈ mod-A ∩ R-proj. Then, the
following assertions are equivalent.

(a) V is an A-projective (A,R)-injective-strongly faithful right module.

(b) S ⊗R V is an S ⊗R A-projective (S ⊗R A,S)-injective-strongly faithful right module for every com-
mutative R-algebra S.
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(c) Vm is an Am-projective (Am, Rm)-injective-strongly faithful right module for every maximal ideal m
in R.

(d) V (m) is right A(m)-projective-injective faithful for every maximal ideal m in R.

Proof. (i) =⇒ (ii). Let S be a commutative R-algebra. The module V is a right A-summand of At for
some t > 0. Hence S ⊗R V is a right S ⊗R A-summand of S ⊗R At ' (S ⊗R A)t. Thus, S ⊗R V is a right
S ⊗R A-projective module. As V is (A,R)-injective, V is an A-summand of HomR(A, V ). So, S ⊗R V is
an S ⊗R A-summand of S ⊗R HomR(A, V ) ' HomS(S ⊗R A,S ⊗R V ) since A ∈ R-proj. Hence, S ⊗R V
is a projective (S ⊗R A,S)-injective. By Lemma 6.1, the map δV ∈ HomA(

⊕
g∈HomA(DV,DA)DV,DA) is

surjective. Applying the functor S ⊗R − we have the following commutative diagram

S
⊗
R

⊕
g∈HomA(DV,DA)

DV S ⊗R DA

⊕
g∈HomS⊗RA(S⊗RDV,S⊗RDA)

S ⊗R DV

⊕
h∈HomS⊗RA(HomS(S⊗RV,S),HomS(S⊗RA,S))

HomS(S ⊗R V, S) HomS(S ⊗R A,S)

θS

S⊗RδV

lS

κS

δS⊗RV

, (108)

where lS and κl are the canonical isomorphisms (as V,A ∈ R-proj). This diagram is commutative since:

δS⊗RV ◦ κS ◦ θS(s⊗ xg) = δS⊗RV ◦ κS(s⊗ x)1S⊗g = δS⊗RV ((s⊗ x)1S⊗g) = 1S ⊗ g(s⊗ x) = s⊗ g(x)

lS ◦ S ⊗R δV (s⊗ xg) = l(s⊗ g(x)) = s⊗ g(x), s ∈ S, x ∈ DV, g ∈ HomA(DV,DA).

The right exactness of S⊗R−implies that S⊗R δV is surjective. Using the commutativity of the diagram
δS⊗RV ◦ κS ◦ θS is surjective. Hence, δS⊗RV is surjective. By Lemma 6.1, (ii) follows.

(ii) =⇒ (iii). For every maximal ideal m in R, consider S = Rm.
(iii) =⇒ (iv). Let m be a maximal ideal in R. Recall that

Xm(m) = Xm ⊗Rm
Rm/mm = X ⊗Rm

Rm ⊗Rm
Rm/mm = X ⊗R Rm/mm = X(m). (109)

Hence, using the same argument as discussed in (i) =⇒ (ii) now with S = Rm/mm yields that V (m)
is A(m)-projective (A(m), R(m))-injective-strongly faithful. Since R(m) is a field, every (A(m), R(m))-
injective is A(m)-injective and strongly faithful coincides with faithful. So, (iv) follows.

(iv) =⇒ (i). Since V (m) is an A(m)-projective right module for every maximal ideal m in R and
V ∈ R-proj, we deduce that V is an A-projective right module. By Theorem 2.12, V is (A,R)-injective.
By Lemma 6.1, δV (m) is surjective for every maximal ideal m in R. By Lemma 6.2, θR(m) is surjective.
By the commutative diagram (108) with S = R(m) we get that lR(m) ◦ R(m) ⊗R δV is surjective. Since
lR(m) is bijective, it follows that R(m)⊗R δV is surjective for every maximal ideal m in R. By Nakayama’s
Lemma, δV is surjective. So, V is also (A,R)-strongly faithful.

By symmetry one obtains:

Proposition 6.4. Let A be a projective Noetherian R-algebra. Let P ∈ A-mod∩R-proj. Then, the
following assertions are equivalent.

(a) P is an A-projective (A,R)-injective-strongly faithful left module.
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(b) S ⊗R P is an S ⊗R A-projective (S ⊗R A,S)-injective-strongly faithful left module for every com-
mutative R-algebra S.

(c) Pm is an Am-projective (Am, Rm)-injective-strongly faithful left module for every maximal ideal m
in R.

(d) P (m) is left A(m)-projective-injective faithful for every maximal ideal m in R.

6.2 Left-right symmetry of relative dominant dimension

For finite dimensional algebras there exists a left faithful projective-injective if and only if there exists a
right faithful projective-injective [Tac63, Theorem 2]. Although, we do not have an argument for (A,R)-
strongly faithfulness being preserved under standard duality, we can recover the following statement.

Lemma 6.5. Let A be a projective Noetherian R-algebra. Then, domdim(A,R)AA ≥ 1 if and only if
domdim(A,R) AA ≥ 1. In particular, if domdim(A,R) AA ≥ 1 or domdim(A,R)AA ≥ 1, then there exist P
and V such that (A,P, V ) is a RQF3 algebra.

Proof. Assume that domdim(A,R)AA ≥ 1. Then, there exists a right A-module V which is A-projective
(A,R)-injective-strongly faithful. Since A ∈ R-proj, it follows that V ∈ R-proj. By Proposition 6.3,
V (m) is an A(m)-projective-injective faithful right module for every maximal ideal m in R. Then,
HomR(m)(V (m), R(m)) is an A(m)-projective-injective left module for every maximal ideal m in R.

Observe that in general if a finitely generated module X over a finite dimensional algebra B over a
field K is faithful then HomK(X,K) is faithful as left B-module. In fact, let b ∈ B and assume that
b · f = 0 for every f ∈ HomK(X,K). Then, for each x ∈ X,

0 = bf(x) = f(xb),∀f ∈ HomK(X,K).

Since X is finitely generated, we deduce that xb = 0. Now using that X is faithful over B yields b = 0.
Therefore, DV (m) ' HomR(m)(V (m), R(m)) is an A(m)-projective-injective faithful left module for

every maximal ideal m in R. By Proposition 6.4, DV is an A-projective (A,R)-injective-strongly faithful
left module. Thus, domdim(A,R) AA ≥ 1. The converse implication is analogous. We also showed that
(A,DV, V ) is a RQF3 algebra.

Corollary 6.6. Let A be a projective Noetherian R-algebra. Then, domdim(A,R)AA = domdim(A,R) AA.

Proof. Assume that domdim(A,R)AA ≥ n for some n ≥ 1. By Lemma 6.5, domdim(A,R) AA ≥ 1. By
Corollary 5.9, domdim(A,R) AA ≥ n. Hence domdim(A,R) AA ≥ domdim(A,R)AA.

Similarly, domdim(A,R)AA ≥ domdim(A,R) AA.

Thus, we will write domdim(A,R) avoiding the left and right notation to denote the relative dominant
dimension of the regular module.

6.3 Relative dominant dimension on closed points

Proposition 6.7. Let (A,P, V ) be a RQF3 algebra. Let M ∈ A-mod∩R-proj. Then, the following
assertions are equivalent.

(i) domdim(A,R)M ≥ 1.

(ii) domdim(S⊗RA,S) (S ⊗RM) ≥ 1 for every commutative R-algebra S.

(iii) domdim(Am,Rm)Mm ≥ 1 for every maximal ideal m in R.

(iv) domdim(A(m)M(m) ≥ 1 for every maximal ideal m in R.
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Proof. Let C = EndA(V ). Denote by DS the standard duality with respect to S, HomS(−, S). Consider
the map ΦM : HomA(V,DM) ⊗C V → DM . Applying the functor S ⊗R − we get the commutative
diagram

S ⊗R HomA(V,DM)⊗C V S ⊗R DM

S ⊗R HomA(V,DM)⊗S⊗RC S ⊗R V

HomS⊗RA(S ⊗R V,DS(S ⊗RM))⊗S⊗RC S ⊗R V DS(S ⊗RM)

θS,M'

S⊗RΦM

lS,M'

κS,M'
ΦS⊗RM

, (110)

where the θS,M , κS,M and lS,M are the natural maps. These are isomorphisms since V ∈ proj-A and
M ∈ R-proj.

(i) =⇒ (ii). Since ΦM is an epimorphism, it follows by diagram 110 that ΦS⊗RM is an epimorphism.
As (S ⊗R A,S ⊗R P, S ⊗R V ) is a RQF3 S-algebra, (ii) follows by Theorem 5.2.

The implication (ii) =⇒ (iii) follows by using (ii) with S = Rm. The implication (iii) =⇒ (iv)
follows by using the same argument as in the implication (i) =⇒ (ii) with S = Rm/mm over Rm.

(iv) =⇒ (i). By the diagram (110), it follows that R(m)⊗RΦM is surjective for every maximal ideal
m in R. By Nakayama’s Lemma, ΦM is surjective. Finally (i) follows by Theorem 5.2.

This last Proposition is not surprising since S⊗R− is right exact and modules having relative dominant
dimension at least one can be determined using surjective maps. By the same reason, flat extensions are
compatible with relative dominant dimension of a module.

Proposition 6.8. Let (A,P, V ) be a RQF3 R-algebra. Let M ∈ A-mod∩R-proj. The following asser-
tions are equivalent. Let n ∈ N.

(i) domdim(A,R)M ≥ n ≥ 1.

(ii) domdim(S⊗RA,S) S ⊗RM ≥ n ≥ 1 for every flat commutative R-algebra.

(iii) domdim(Am,Rm)Mm ≥ n ≥ 1 for every maximal ideal m in R.

Proof. By Proposition 6.3, (S ⊗R A,S ⊗R P, S ⊗R V ) is a RQF3 S-algebra. Note that S ⊗R C '
S ⊗R EndA(V ) ' EndS⊗RA(S ⊗R V ). By Proposition 6.7, domdim(S⊗RA,S) S ⊗R M ≥ 1. Assume
that n ≥ 2. Hence, ΦM is an isomorphism. By the diagram (110), ΦS⊗RM is an isomorphism. So,
domdim(S⊗RA,S) S ⊗RM ≥ 2. Now assume that n ≥ 3. Then,

0 = S ⊗R TorCi (HomA(V,DM), V ) = TorS⊗RC
i (S ⊗R HomA(V,DM), S ⊗R V )

= TorS⊗RC
i (HomS⊗RA(S ⊗R V,DS(S ⊗RM)), S ⊗R V ), 1 ≤ i ≤ n− 2.

Now, (ii) follows by Theorem 5.2.
The implication (ii) =⇒ (iii) follows by applying S = Rm for every maximal ideal m in R.
(iii) =⇒ (i). If n ≥ 1, then by Proposition 6.7 domdim(A,R)M ≥ 1. If n ≥ 2, then ΦMm

is
isomorphism for every maximal ideal m in R. By the diagram (110), Rm⊗RΦM is isomorphism for every
maximal ideal m in R. Hence, ΦM is an isomorphism. Moreover,

TorCi (HomA(V,DM), V )m = TorCm
i (HomAm

(Vm, DmMm), Vm) = 0, 1 ≤ i ≤ n− 2.

By Theorem 5.2,domdim(A,R)M ≥ n ≥ 1.

Proposition 6.9. Let (A,P, V ) be a RQF3 R-algebra. Let M ∈ A-mod∩R-proj. If S is a Noetherian
faithfully flat R-algebra, then

domdim(S⊗RA,S) S ⊗RM = domdim(A,R)M. (111)
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Proof. By Proposition 6.8, domdim(S⊗RA,S) S ⊗R M ≥ domdim(A,R)M . The map ΦS⊗RM is epi (resp.
iso) if and only the map S ⊗R ΦM is epi (resp. iso). Recall that since S is faithfully flat an R-module is
zero if and only if it is the zero module under the functor S ⊗R −. In particular, the map ΦS⊗RM is epi
(resp. iso) if and only if the map ΦM is epi (resp. iso). By flatness of S,

TorS⊗RC
i (HomS⊗RA(S ⊗R V,HomS(S ⊗RM,S), S ⊗R V ) ' S ⊗R TorCi (HomA(V,DM), V ), ∀i > 0.

Therefore, TorS⊗RC
i (HomS⊗RA(S ⊗R V,HomS(S ⊗R M,S), S ⊗R V ) is zero if and only if

TorCi (HomA(V,DM), V ) is zero. The result follows Theorem 5.2 and Proposition 3.23.

An immediate application of Proposition 6.9 is for polynomial ringsR[X1, . . . , Xn]. Further, R[X1, . . . , Xn]
is free of infinite rank over R, and so it is faithfully flat.

An example of the importance of changing the ground ring to compute dominant dimension is that for
finite dimensional algebras the computation of dominant dimension can be reduced to the computation of
dominant dimension over algebraically closed fields. This is a known fact, and it can be found in [Mue68,
Lemma 5].

Proposition 6.10. Let A be a finite dimensional algebra over a field K. Assume that A is QF3 algebra.
Then, domdimA = domdimK ⊗K A.

Proof. Let K be the algebraic closure of K. In particular, K can be regarded as K-vector space, hence
it is K-free. Furthermore, K is faithfully flat over K. By Proposition 6.9, the claim follows.

The idea here used can be generalized to the next Proposition. For the second part of its proof, we
will require the following lemma.

Lemma 6.11. Let f : R→ S be a surjective R-algebra map. Let A be a projective Noetherian R-algebra.
Then, for every Y ∈ S ⊗R A-mod, S ⊗R Y ' Y as S ⊗R A-modules.

Proof. Let Y ∈ S ⊗R A-mod. Y can be regarded as an A-module with action a · y = (f(1R)⊗R a) · y =
(1S ⊗ a) · y. Consider the multiplication map µ : S⊗R Y → Y . µ is an S⊗RA-homomorphism. The map
ν : Y → S ⊗R Y , given by ν(y) = 1S ⊗ y, is an S ⊗R A-homomorphism. Further, ν and µ are inverse to
each other. It follows that µ is an S ⊗R A-isomorphism.

Proposition 6.12. Let S be a commutative algebra over a commutative Noetherian ring R. Let A be
projective Noetherian R-algebra. Let M ∈ A-mod∩R-proj.

Then, domdim(A,R)M ≤ domdim(S⊗RA,S) S ⊗RM . Assume, additionally the following

• (A,P, V ) is a RQF3 R-algebra;

• there is a surjective map of R-algebras R→ S making S an R-projective module.

Then, domdim(A,R)M = domdim(S⊗RA,S) S ⊗RM .

Proof. Let domdim(A,R)M ≥ n. Then, there exists an (A,R)-exact sequence

0→M → X1 → · · · → Xn (112)

such that each Xi is A-projective (A,R)-injective. Applying D yields the (A,R)-exact sequence

DXn → DXn−1 → · · · → DX1 → DM → 0. (113)

The functor S ⊗R − is exact on (A,R)-exact sequences, so we have the S ⊗R A-exact sequence

S ⊗R DXn → S ⊗R DXn−1 → · · · → S ⊗R DX1 → S ⊗R DM → 0. (114)
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Observe that S ⊗R DM = S ⊗R HomR(M,R) ' HomS⊗RR(S ⊗R M,S ⊗R R) = DS(S ⊗R M) and
each S ⊗R DXi is a S ⊗R A-projective (S ⊗R A,S)-injective right module. As S ⊗R M ∈ S-proj,
(114) is (S ⊗R A,S)-exact. Applying DS yields that domdim(S⊗RA,S) S ⊗R M ≥ n. This shows that,
domdim(S⊗RA,S) S ⊗RM ≥ domdim(A,R)M .

Now assume that there is a surjective map of R-algebras R → S. In particular, S can be regarded
as an R-module by restriction of scalars. Assume that this map makes S an R-projective module. Let
domdim(S⊗RA,S) S ⊗RM ≥ n for some integer n ≥ 0. Then, there exists an (S ⊗R A,S)-exact sequence

0→ S ⊗RM → Y1 → · · · → Yn, (115)

where Yi, 1 ≤ i ≤ n, is (S⊗RA)-projective (S⊗RA,S)-injective. Applying DS we obtain the (S⊗RA,S)-
exact sequence

DSYn → · · · → DSY1 → DS(S ⊗RM)→ 0. (116)

Observe that (S ⊗R A,S ⊗R P, S ⊗R V ) is a RQF3 S-algebra. Thus, each DSYi ∈addS⊗RA S ⊗R V . As
S is projective over R, S is an R-summand of ⊕IR for some set I. Hence, DSYi is an A-summand of
S⊗RV t which is an A-summand of ⊕IV t. Therefore, DSYi ∈ AddA V . By Observation 5.4, the canonical
map Φ: HomA(V,DS(S ⊗RM))⊗C V → DS(S ⊗RM) is an isomorphism and for every 1 ≤ i ≤ n − 2
TorCi (HomA(V,DS(S ⊗RM)), V ) = 0. Now, note that

DS(S ⊗RM) ' HomS(S ⊗RM,S) ' S ⊗R HomR(M,R) = S ⊗R DM

is an A-summand of ⊕IDM . In particular, ΦM is an isomorphism and TorCi (HomA(V,DM), V ) = 0,
1 ≤ i ≤ n−2. So, domdim(A,R)M ≥ n. This shows that domdim(A,R)M ≥ domdim(S⊗RA,S) S⊗RM .

In the following, we will see that we can reduce the computation of relative dominant dimension to
computing dominant dimension over fields.

Theorem 6.13. Let (A,P, V ) be a RQF3 algebra over a Noetherian ring R. Let M ∈ A-mod∩R-proj.
Then,

domdim(A,R)M = inf{domdimA(m)M(m) : m maximal ideal in R}.

Proof. Let m be a maximal ideal in R. By Proposition 6.12, domdimA(m)M(m) ≥ domdim(A,R)M .
Assume that inf{domdimA(m)M(m) : m maximal ideal in R} ≥ n. We want to show that

domdim(A,R)M ≥ n. By Proposition 6.3, (A(m), P (m), V (m)) is a QF3 algebra for every maximal ideal
m in R. Denote by D(m) the standard duality with respect to R(m) and denote C = EndA(V ).

If n = 0 there is nothing to show. Assume that n = 1. Consider the following commutative diagram

HomA(m)(V (m), DM(m))⊗C(m) V (m) D(m)M(m)

R(m)⊗R HomA(V,DM)⊗C V DM(m)

ΦM(m)

ΦM (m)

' ' . (117)

By assumption, ΦM(m) is an epimorphism. Thus, ΦM (m) is an epimorphism for every maximal ideal m
in R. By Nakayama’s Lemma, ΦX is an epimorphism. By Proposition 3.23, domdim(A,R)M ≥ 1.

Assume that n = 2. By the commutative diagram (117) ΦM (m) is an isomorphism for every max-
imal ideal m in R. Since ΦM is epi and M ∈ R-proj, ΦM splits over R. That is, there is a map
t ∈ HomR(DM,HomA(V,DM)⊗C V ) such that ΦM ◦ t = idDM . In particular, t is a monomorphism.
Applying R(m) ⊗R −, we get idDM(m) = ΦM ◦ t(m) = ΦM (m) ◦ t(m) for every maximal ideal m in R.
Since ΦM (m) is an isomorphism for every maximal ideal m in R it follows that t(m) is an isomorphism
for every maximal ideal m in R. By Nakayama’s Lemma, t is surjective. So, t is an R-isomorphism. It
follows that ΦM is bijective. By Proposition 3.23, domdim(A,R)M ≥ 2.
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Assume now that n ≥ 3. In particular, domdim(A,R)M ≥ 2. Hence HomA(V,DM) ⊗C V ' DM ∈
R-proj. By Theorem 5.2, Tor

C(m)
i (HomA(m)(V (m), DM(m), V (m)) = 0, 1 ≤ i ≤ n− 2 for every maximal

ideal m in R. Let

· · · → Q2 → Q1 → Q0 → V → 0 (118)

be a C-projective resolution of V . Since V ∈ R-proj, this resolution is (C,R)-exact. Thus,

· · · → Q2(m)→ Q1(m)→ Q0(m)→ V (m)→ 0 (119)

is a C(m)-projective resolution of V . Consider the chain complex P • = HomA(V,DM)⊗C Q•, where Q•

denotes the deleted projective resolution (118). Each object HomA(V,DM)⊗CQi ∈addR HomA(V,DM) ⊂
R-proj, since HomA(V,DM) ∈ R-proj. By Lemma A.5, we obtain the Künneth Spectral sequence

E2
i,j = TorRi (Hj(HomA(V,DM)⊗C Q•), R(m)) =⇒ Hi+j(HomA(V,DM)⊗C Q•(m)). (120)

We have that

HomA(V,DM)⊗C Q•(m) ' HomA(V,DM)(m)⊗C(m) Q(m)• ' HomA(m)(V (m), DM(m))⊗C(m) Q(m)•,
(121)

where Q(m)• is a C(m)-projective resolution of V (m). Hence,

Hi+j(HomA(V,DM)⊗C Q•(m)) = Tor
C(m)
i+j (HomA(m)(V (m), DM(m)), V (m)) (122)

and

Hj(HomA(V,DM)⊗C Q•) = TorCj (HomA(V,DM), C). (123)

Thus, for every maximal ideal m in R,

E2
i,j = TorRi (TorCj (HomA(V,DM), V ), R(m)) =⇒ Tor

C(m)
i+j (HomA(m)(V (m), DM(m)), V (m)). (124)

We shall prove by induction on 1 ≤ i ≤ n − 2 that TorCj (HomA(V,DM), V ) = 0. By Lemma A.3 there
is an exact sequence

E2
2,0 → E2

0,1 → Tor
C(m)
1 (HomA(m)(V (m), DM(m)), V (m)) = 0. (125)

As HomA(V,DM)⊗CV ∈ R-proj, E2
2,0 = TorR2 (HomA(V,DM)⊗CV,R(m)) = 0. Thus, for every maximal

ideal m in R, 0 = E2
0,1 = TorC1 (HomA(V,DM), V )⊗R R(m). Therefore, TorC1 (HomA(V,DM), V ) = 0.

Assume now that TorCl (HomA(V,DM), V ) = 0 for some 1 ≤ l < n− 2. Then,

E2
i,j = TorRi (TorCj (HomA(V,DM), V ), R(m)) = TorRi (0, R(m)) = 0, 1 ≤ j ≤ l, i ≥ 0. (126)

By Lemma A.4, there exists an exact sequence

E2
l+2,0 → E2

0,l+1 → Tor
C(m)
l+1 (HomA(m)(V (m), DM(m)), V (m)) = 0, (127)

where E2
l+2,0 = TorRl+2(HomA(V,DM)⊗CV,R(m)) = 0. Therefore, E2

0,l+1 = TorCl+1(HomA(V,DM), V )(m) =

0 for every maximal ideal m in R. Therefore, TorCl+1(HomA(V,DM), V ) = 0. Hence, we obtain

TorCi (HomA(V,DM), V ) = 0, 1 ≤ i ≤ n− 2. (128)

By Theorem 5.2, domdim(A,R)M ≥ n.
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Combining this theorem with Proposition 6.10, we deduce that the computation of relative dominant
dimension of a projective Noetherian R-algebra can be reduced to computing the dominant dimension
of finite dimensional algebras over algebraically closed fields. This shows that the dominant dimension is
more static under change of ring than other homological invariants. For example, the global dimension
of an algebra can heavily depend on the ground field of the algebra, and even worse it can depend on the
Krull dimension of the ground ring in case of Noetherian algebras.

This reduction theorem also explains the meaning behind the generators relative cogenerators which
arise in the relative Morita-Tachikawa correspondence. These are the ones which make its endomorphism
algebra to admit a base change property like the Schur algebra.

6.4 Base change property

Proposition 6.14. Let B be a projective Noetherian R-algebra. Let M ∈ B-mod∩R-proj be a B-
generator (B,R)-cogenerator. The following assertions are equivalent.

(i) DM ⊗B M ∈ R-proj.

(ii) For every commutative R-algebra S, S ⊗R EndB(M)op ' EndS⊗RB(S ⊗RM)op as S-algebras.

Proof. Assume that DM ⊗B M ∈ R-proj holds. Let S be a commutative R-algebra. Denote by DS the
standard duality over S. As S ⊗R − preserves coproducts,

DS(S ⊗RM)⊗S⊗RB S ⊗RM = HomS(S ⊗RM,S)⊗S⊗RB S ⊗RM ' S ⊗R HomR(M,R)⊗B M ∈ S-proj .
(129)

Denote by µ the canonical map S ⊗R HomB(M,M) → HomS⊗RB(S ⊗R M,S ⊗R M). By Proposition
2.3, the canonical map S ⊗R DM ⊗B M → DS(S ⊗RM) ⊗S⊗RB S ⊗RM is an isomorphism. Consider
the following commutative diagram

DS HomS⊗RB(S ⊗RM,S ⊗RM) DS(S ⊗R HomB(M,M))

DS(S ⊗RM)⊗S⊗RB S ⊗RM S ⊗R DM ⊗B M

DSµ

' '

'

, (130)

where the columns are isomorphisms by Proposition 2.1 since

DM ⊗B M ∈ R-proj, DS(S ⊗RM)⊗S⊗RB S ⊗RM ∈ S-proj . (131)

Consequently, DSµ is an isomorphism. Again, since DS(S ⊗R M) ⊗S⊗RB S ⊗R M ∈ S-proj it follows
that µ is bijective.

Conversely, assume that (ii) holds. In particular, for every maximal ideal m in R, EndB(m)(M(m)) '
EndB(M)(m). Since R(m) ⊗R − preserves direct sums, we get that M(m) is a generator-cogenerator
over B(m). Hence by Morita-Tachikawa correspondence, domdim EndB(m)(M(m))op ≥ 2. Now, for each
maximal ideal m in R, (ii) yields domdim EndB(M)op(m) ≥ 2. By Proposition 6.3, M is an EndB(M)op-
projective (EndB(M)op, R)-injective-strongly faithful module. By Proposition 6.13,
domdim(EndB(M)op, R) ≥ 2. By relative Morita-Tachikawa correspondence DM ⊗B M ∈ R-proj.

As usual, we can compare this situation with what happens to regular rings with Krull dimension at
most one.

Lemma 6.15. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Let
A be a projective Noetherian R-algebra. Then, the canonical map S⊗RHomA(M,X)→ HomS⊗RA(S⊗R
M,S ⊗R X) is a monomorphism for every M,X ∈ A-mod and every commutative R-algebra S.
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Proof. Let M,X ∈ A-mod and let S be a commutative R-algebra. Consider an A-projective presentation

P1 → P0 →M → 0. (132)

The functor HomS⊗RA(−, S ⊗RX) ◦ S ⊗R − : A-mod→ S ⊗R A-mod is contravariant left exact. So, the
induced sequence

0→ HomS⊗RA(S ⊗RM,S ⊗R X)→ HomS⊗RA(S ⊗R P0, S ⊗R X)→ HomS⊗RA(S ⊗R P1, S ⊗R X).
(133)

THe functor HomA(−, X) is left exact, thus we have the exact sequence

0→ HomA(M,X)→ HomA(P0, X)→ HomA(P1, X). (134)

Denote by f the map HomA(M,X) → HomA(P0, X). By exactness of (134), the cokernel of f is a
submodule of HomA(P1, X). Since dimR ≤ 1, the cokernel of f is R-projective. In particular, f is a split
R-mono and so it remains a monomorphism under S ⊗R −. Using the commutative diagram

S ⊗R HomA(M,X) S ⊗R HomA(P0, X)

HomS⊗RA(S ⊗RM,S ⊗R X) HomS⊗RA(S ⊗R P0, S ⊗R X)

S⊗Rf

' , (135)

we conclude that the canonical map S ⊗R HomA(M,X)→ HomS⊗RA(S ⊗RM,S ⊗R X) is a monomor-
phism.

6.5 Relative Nakayama conjecture

As in the field case, the relative dominant dimension is bounded by the global dimension.

Proposition 6.16. Let A be a projective Noetherian R-algebra. If domdim (A,R) <∞, then

domdim (A,R) ≤ injdim(A,R) AA, domdim (A,R) ≤ gldimA.

Proof. Assume that domdim (A,R) = n < +∞. So, there exists an (A,R)-exact sequence

0→ A→ X0 → X1 → · · · → Xn−1, (136)

with all Xi being (A,R)-injective A-projective. Applying D we obtain the right A-exact sequence

DXn−1 → · · · → DX1 → DX0 → DA→ 0. (137)

In particular, there exists an exact sequence

0→ Kn−2 → DXn−2 → · · · → DX1 → DX0 → DA→ 0. (138)

By contradiction, assume that n > pdimADA. Since all DXi are A-projective, it follows that Kn−2 must
be A-projective. Hence DKn−2 is (A,R)-injective and R-projective. Moreover, we have a factorization

Xn−2 Xn−1

DKn−2

, (139)

and the monomorphism is an (A,R)-monomorphism since this factorization is given by (136). So, it
must split over A, and therefore DKn−2 is also A-projective. Applying D to (138), it follows that
domdim (A,R) is infinite. Therefore, we must have

injdim(A,R) AA = pdimADA ≥ n = domdim (A,R)

gldimA ≥ pdimADA ≥ n = domdim (A,R).
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Theorem 6.17. If the Nakayama conjecture holds for finite dimensional algebras over a field, then the
relative Nakayama Conjecture holds for any projective Noetherian R-algebra.

Proof. Assume that domdim(A,R) = +∞. By Theorem 6.13, domdimA(m) = +∞ for every maximal
ideal m in R. If the Nakayama conjecture holds for finite dimensional algebras over fields, then A(m) is
A(m)-injective for every maximal ideal m in R. As A is projective when regarded as R-module, it follows
that the (left) regular module A is (A,R)-injective by Theorem 2.12. In the same way, the right regular
module A is (A,R)-injective. Thus, A is a relative self-injective R-algebra.

6.5.1 Center of a Noetherian algebra as ground ring

At this point we can ask why we never considered computing relative dominant dimension of algebra A
over its center Z(A) to obtain information of relative dominant dimension of A as R-algebra for some
commutative Noetherian ring R. The main problem lies in the fact that Noetherian algebras in many
instances are not projective as modules over their center which is a crucial assumption made throughout
this paper. So, nice properties like base change properties might not hold in such scenario. For example,
let k an algebraically closed field and let A be the following quiver k-algebra

1 2
α

β
, αβ = 0.

Note that we read the arrows in a path like morphisms, that is, from right to left. Denote by ei the
idempotent of A associated with the vertex i, i = 1, 2. It is not difficult to see that A has dominant
dimension two as finite-dimensional k-algebra. The center of A is the subring of A generated by the
elements βα and e1 + e2 = 1A, that is, Z(A) ' k[x]/(x2). Since Z(A) is a principal ideal domain, A
cannot be projective over Z(A) since it has dimension 5 over k. We can see that all the (A,Z(A))-
projective modules are in the additive closure of either A ⊗Z(A) Z(A) ' A or A ⊗Z(A) k. The latter is
the direct sum of Ae2 with the injective A-module associated with the vertex 2. Therefore, Homk(AA, k)
is a left (A,Z(A))-projective module. Furthermore,

AA ' Homk(Homk(AA, k), k) ∈addA Homk(AA⊗Z(A) M,k) =addA HomZ(A)(AA,Homk(M,k)).

Since A ' Aop, it follows that A is a relative self-injective algebra over its center Z(A).
So, choosing the center as the ground ring might not give much additional information about the

algebra A. In particular, such an approach might not give any information on the relative dominant
dimension of a projective Noetherian R-algebra for some commutative Noetherian ring distinct from the
center of the algebra.

7 Applications and some examples

We will now give some applications of the theory developed here. First, we will start by observing that
Roggenkamp and Auslander’s correspondence (see [AR72]) for orders of finite type can be formulated in
terms of relative dominant dimension (Theorem 7.3). Secondly, we see that reflexive modules of projective
Noetherian algebras can be determined using relative dominant dimension (Theorem 7.5). In addition,
we are now able to extend the concepts of Morita algebras (see Theorem 7.6) and gendo-symmetric
algebras (see Theorem 7.8) to the integral setup. We finish this section computing the relative dominant
dimension of Schur algebras (see Theorem 7.12) and quantized Schur algebras (see Theorem 7.20) for
the parameters n ≥ d. Along the way, we give an alternative description of a basis of quantized Schur
algebras (Proposition 7.16).
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7.1 Orders of finite lattice type

When the ground ring R is a Dedekind domain, projective Noetherian R-algebras A are known in the
literature as R-orders. For a more detailed exposure of representation theory of R-orders, we refer to
[Rei70]. The modules belonging to A-mod∩R-proj are known as A-lattices. Let F be the quotient
field of R, then F ⊗R A is a finite dimensional algebra over F . We can identify A with 1 ⊗R A, so A
is embedded in the finite dimensional algebra F ⊗R A. The same idea holds for the A-lattices. Every
A-lattice M can be embedded in the vector space F ⊗R M . The (A,R)-monomorphisms also receive
special attention in order theory. Given two A-lattices M,N , M is said to be R-pure A-sublattice of N if
there exists an (A,R)-monomorphism M → N . Moreover, the (A,R)-monomorphisms arise as inclusions
of F ⊗R A-modules.

Theorem 7.1. [Zas38] Let R be a Dedekind domain and let A be an R-order. Let F be the quotient
field of R. Given any A-lattice N , there is a bijection between A-submodules W of F ⊗R N and R-pure
A-sublattices M of N . The correspondence is given by

M = N ∩W, W = F ⊗RM.

Moreover, each V ∈ F ⊗R A-mod is of the form F ⊗R N for some A-lattice N in V .

We can deduce in this section that the characterization of orders of Finite Lattice-Type by Auslander
and Roggenkamp [AR72] is a particular case of relative Morita-Tachikawa correspondence (Theorem 4.3).
We say that an R-order A has finite lattice-type if A has a finite number of indecomposable A-lattices.
Otherwise, we say that A is of infinite lattice-type.

By [Fad65, Proposition 25.1], if F ⊗R A is not semi-simple, then A is of infinite lattice type. We
remark that semi-simple algebras over algebraic number fields are separable. In [AR72], R is assumed to
be a complete discrete valuation ring such that its quotient field is a completion of an algebraic number
field. This is due to the following fact:

Theorem 7.2. [Kne66, Jon63] Let R be a Dedekind domain such that its quotient field is an algebraic
number field. Let G be a finite group and RG the group algebra of G over R. Then, RG is of finite lattice
type if and only if R̂Gm is of finite lattice type for every maximal ideal m in R.

This reduction technique is useful because for every projective Noetherian algebra over a Noetherian
local complete ring, A, A-mod is a Krull-Schmidt category. In particular, this allowed Jones, Heller and
Reiner to completely determine all group algebras of finite type.

Theorem 7.3. Let R be a local complete discrete valuation ring such that its quotient field K is a
completion of an algebraic number field. There is a bijection between

A :
A an R-order in a

semi-simple K-algebra
of finite type


/
∼ ←→

B :

B an R-order in a semi-simple K-algebra with
domdim(B,R) ≥ 1, gldimB ≤ 2, and

every minimal (B,R)-injective-strongly faithful
projective module satisfies

the double centralizer property


/

iso

In this notation, A ∼ A′ if and only if A and A′ are Morita equivalent. This correspondence is given by:

A 7→B = EndA(G)op

(EndB(N))←[B

where N is an B-projective (B,R)-injective-strongly faithful right module and G is an additive generator
of A-mod∩R-proj.
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Proof. Let A be an R-order such that K ⊗R A is a semi-simple algebra and A is of finite type. Consider
G = ⊕i∈IMi, where Mi are all non-isomorphic indecomposable A-lattices for some finite set I. In
particular, every module of A-mod belongs to addG. Thus, G is an additive generator of A-mod. So,
G is a generator (A,R)-cogenerator. As A ∈ R-proj, it follows by Theorem 4.3 that B = EndA(G)op

has relative dominant dimension domdim(B,R) greater or equal than one and all minimal projective
(B,R)injective-strongly faithful modules satisfy the double centralizer property between A and B. Since
K is flat as R-module B is an R-order in the semi-simple K-algebra

K ⊗R B = K ⊗R EndA(G) ' EndK⊗RA(K ⊗R G). (140)

In fact, K ⊗R G is a semi-simple module over K ⊗R A and consequently, its endomorphism algebra is
semi-simple by the Wedderburn Theorem. It remains to show that gldimB ≤ 2.

Let X ∈ B-mod. Let P1
h−→ P0 → X → 0 be the beginning of a B-projective resolution of

X. By projectivization, the functor HomA(G,−) : A-mod → B-mod induces an equivalence between
A-mod∩R-proj = addG and B-proj. Hence, there exists modules M0,M1 ∈ A-mod∩R-proj such that
Pi ' HomA(G,Mi), i = 0, 1. Further, there exists a map f ∈ HomA(M1,M0) satisfying h = HomA(G, f).

Applying HomA(G,−) to 0→ ker f →M1
f−→M0 yields the exact sequence

0→ HomA(G, ker f)→ P1
h−→ P0 → X → 0. (141)

R has Krull dimension one, therefore ker f is an A-lattice. By assumption, ker f ∈ addG. This shows
that HomA(G, ker f) ∈add HomA(G,G) = B-proj. Hence, pdimB X ≤ 2.

Conversely, assume that B is an R-order in a semi-simple K-algebra K⊗RB with domdim(B,R) ≥ 1,
gldimB ≤ 2 and all minimal (B,R)-injective-strongly faithful projective modules M satisfy a double
centralizer property between B and EndB(M). Let M be a B-lattice such that (B,DM,M) is a RQF3
algebra. By Theorem 4.3, A = EndB(M) ∈ R-proj and M is an A-generator (A,R)-cogenerator such
that B ' EndA(M)op as R-algebras. So, A is an R-order in the semi-simple K-algebra

K ⊗R A ' K ⊗R EndB(M) ' EndK⊗RB(K ⊗RM). (142)

Since A-mod is a Krull-Schmidt category, the number of indecomposable A-lattices summands of M is
finite and unique up to isomorphism. Therefore, it is enough to prove that addAM = A-mod∩R-proj.

Let X ∈ A-mod∩R-proj. Let 0 → X → I0 → I1 be the standard (A,R)-injective resolution of X.
Applying the functor HomA(M,−) yields the B-exact sequence

0→ HomA(M,X)→ HomA(M, I0)→ HomA(M, I1)→ Y → 0 (143)

for some Y ∈ B-mod. Now, the fact that M is an (A,R)-cogenerator implies that HomA(M, Ii) ∈
add HomA(M,M). The projective dimension of Y is at most two, and consequently, HomA(M,X) is
B-projective. By projectivization, there exists M0 ∈addAM satisfying HomA(M,X) ' HomA(M,M0).
Now, thanks to the exactness of M ⊗B − and the standard (A,R)-injective resolution of X, M0 '
M ⊗B HomA(M,X) is isomorphic to X.

7.2 Relative torsionless and reflexive modules

Given M ∈ A-mod, we say that M is (A,R)-torsionless if there exists a projective P ∈ A-proj and an
(A,R)-monomorphism M → P .

In [FOY18] Fang, Kerner and Yamagata showed that the theory of dominant dimension over finite
dimensional algebras over a field was related to the exactness of left adjoint of the double dual functor

(−)∗∗ : A-Mod→ A-Mod, M 7→ HomAop(HomA(M,A), A). (144)

For relative dominant dimension, the relevant functor to consider is the following functor

D : A-Mod→ Mod-A, M 7→ HomA(M,A)⊗A DA. (145)
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Proposition 7.4. Let (A,P, V ) be a RQF3 algebra with domdim (A,R) ≥ 2.
Define the natural transformation γ : D → D with morphisms γX : HomA(X,A)⊗ADA→ DX, given

by γX(f ⊗ g)(x) = g(f(x)), f ⊗ g ∈ HomA(X,A)⊗A DA, x ∈ X.
There exists a natural equivalence Σ: HomA(V,D−) ⊗C V → D making the following diagram com-

mutative:

HomA(V,DX)⊗C V DX

DX DX

'

ΦX
γX , ∀X ∈ A-Mod . (146)

Proof. Let X ∈ A-mod. By assumption ΦA : HomA(V,DA)⊗CV → DA is an isomorphism. Consider the
C-isomorphism
κX : HomA(V,DX)→ HomR(V ⊗A X,R)→ HomA(X,DV ) given by κX(g)(x)(v) = g(v)(x), g ∈ HomA(V,DX),
x ∈ X, v ∈ V . By Tensor-Hom adjunction the following composition of C-maps is a C-isomorphism

HomA(V,DX) HomA(X,DV ) HomA(X,HomA(HomA(DV,A), A))

HomA(HomA(DV,A),HomA(X,A)) HomA(HomA(DV,A)⊗A X,A)

κX HomA(X,wDV )

ρX,HomA(DV ,A)

σHomA(DV ,A),X

.

Denote this isomorphism by Σ
(1)
X . By Tensor-Hom adjunction and since DV ∈ Aop-proj the following

map is an C-isomorphism

HomA(X,A)⊗A DV
HomA(X,A)⊗AwDV−−−−−−−−−−−−−→ HomA(X,A)⊗A (DV )∗∗

ψHomA(DV,A)−−−−−−−−−→ HomA(HomA(DV,A),HomA(X,A)).

Denote this isomorphism by Σ
(2)
X , where ∗ denotes the dual functor HomA(−, A). Taking into account that

Σ
(1)
X

−1
= κ−1

X ◦HomA(X,wDV )−1 ◦σX,HomA(DV,A) ◦ρHomA(DV,A),X the following diagram is commutative:

HomA(X,A)⊗A DV ⊗C V HomA(X,A)⊗A DA

HomA(HomA(DV,A),HomA(X,A))⊗C V HomA(V,DX)⊗C V DX

Σ
(2)
X ⊗C idV

HomA(X,A)⊗AΦA

γX

ΦXΣ
(1)
X ⊗C idV

.

(147)

Let ΣX be the composition (HomA(X,A)⊗AΦA)−1 ◦ (Σ
(2)
X ⊗C idV )−1 ◦Σ

(1)
X ⊗C idV . Since all these maps

are functorial then Σ is a natural equivalence between the functors HomA(V,D−) ⊗C V and D which
satisfies γX ◦ ΣX = ΦX for all X ∈ A-mod.

Recall that M ∈ A-mod is called reflexive if the canonical A-map M → HomAop(HomA(M,A), A)
is an isomorphism.

Theorem 7.5. Let (A,P, V ) be a RQF3 algebra with domdim (A,R) ≥ 2. Let M ∈ A-mod∩R-proj.
The following assertions are equivalent.

(i) M is (A,R)-torsionless.

(ii) domdim(A,R)M ≥ 1.

(iii) The map ΦM : HomA(V,DM)⊗C V → DM is surjective.

(iv) The map γM : HomA(M,A)⊗A DA→ DM is surjective.
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The following assertions are equivalent.

(a) M is reflexive over A and HomA(M,A)⊗A DA ∈ R-proj.

(b) domdim(A,R)M ≥ 2.

(c) The map ΦM : HomA(V,DM)⊗C V → DM is bijective.

(d) The map γM : HomA(M,A)⊗A DA→ DM is bijective.

Proof. By Proposition 7.4, the implications (iii) ⇔ (iv) and (c) ⇔ (d) hold. By relative Mueller char-
acterization 3.23, (ii) ⇔ (iii) and (b) ⇔ (c) follow. Assume that (i) holds. Since domdim(A,R) ≥ 1
there exists a projective (A,R)-injective module X such that A → X is an (A,R)-monomorphism. Us-
ing the (A,R)-monomorphism M → P → At → Xt (ii) follows. Assume that (ii) holds. Then, there
exists an (A,R)-monomorphism of M into an A-projective (A,R)-injective module. In particular, M is
(A,R)-torsionless.

It remains to show that (a) is equivalent to (d).
The diagram

DDM D(HomA(M,A)⊗A DA)

M HomA(HomA(M,A), A)

DγM

τM

wM κ ' (148)

is commutative. In fact, for m ∈M,f ∈ HomA(M,A), g ∈ DA

κτM (m)(f ⊗ g) = g(τM (m)(f)) = g(f(m))

DγM ◦ wM (m)(f ⊗ g) = HomR(γM , R)wM (m)(f ⊗ g) = wM (m) ◦ γM (f ⊗ g) = γM (f ⊗ g)(m) = g(f(m)).

Assume that (a) holds. Then, τM is an isomorphism. So, by the diagram (148) DγM is an isomor-
phism. Since HomA(M,A) ⊗A DA ∈ R-proj, γM is an isomorphism. Assume now that (d) holds. As
DM ∈ R-proj, it follows that HomA(M,A) ⊗A DA ∈ R-proj. Also, DγM is an isomorphism. By the
diagram (148), τM is an isomorphism. So, M is reflexive over A.

7.3 Relative Morita algebras

We shall now introduce a generalization of Morita algebras introduced in [KY13] to algebras over Noethe-
rian rings. This also generalizes [Cru21, Theorem 11] and [FHK21, Proposition 2.9].

Theorem 7.6. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The
following assertions are equivalent.

(a) (A,P,DP ) is a RQF3 algebra so that domdim (A,R) ≥ 2 and the restriction of the Nakayama
functor DA⊗A − : addP →addP is well defined;

(b) (A,P,DP ) is a RQF3 algebra so that domdim (A,R) ≥ 2 and addADA⊗A P =addA P .

(c) A is the endomorphism algebra of a generator M ∈ B-mod∩R-proj satisfying DM ⊗BM ∈ R-proj
over a relative self-injective R-algebra B, where B ∈ R-proj.

(a’) (A,P,DP ) is a RQF3 algebra so that domdim (A,R) ≥ 2 and the restriction of the Nakayama
functor −⊗A DA : addDP →addDP is well defined;

(b’) (A,P,DP ) is a RQF3 algebra so that domdim (A,R) ≥ 2 and addADP ⊗A DA =addADP .
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Proof. The argument is essentially the same as presented in [Cru21, Theorem 11] once we replace dom-
inant dimension by relative dominant dimension. It is enough to prove (a) =⇒ (c) =⇒ (b) since
(b) =⇒ (a) is clear and the implications (b′) =⇒ (a′) =⇒ (c) =⇒ (b′) are analogous.

Assume that (a) holds. By relative Morita-Tachikawa correspondence (see Theorem 4.1) P ⊗B DP ∈
R-proj, B = EndA(P )op = EndA(DP ) and A ' EndB(P ) ' EndB(DP )op. It remains to show that B is
relative self-injective. But this follows immediately from observing that

B = HomA(P, P ) ' HomA(P,A)⊗A P ' D(DA⊗A P )⊗A P ∈addDP ⊗A P =addDB. (149)

Hence, B is (B,R)-injective.
Assume that (c) holds. By the relative Morita-Tachikawa correspondence, domdim (A,R) ≥ 2 so that

(A,DM,M) is RQF3 and A = EndB(M)op. Moreover,

DA⊗A DM ' DM ⊗B M ⊗A DM ' DM ⊗B DB. (150)

Since B is a relative self-injective algebra DB is a B-progenerator. Hence,addADM⊗BDB =addADM .
This completes the proof.

The pair (A,P ) (or (A,DP ) if one prefers to work with right modules) is called a relative Morita
R-algebra if it satisfies one of the conditions of Theorem 7.6.

Using Theorem 7.6(c), we see that relative Morita algebras generalize relative self-injective algebras.

7.4 Relative Gendo-symmetric algebras

Definition 7.7. Let B be a projective Noetherian algebra over a commutative Noetherian ring R. B is
said to be relative symmetric R-algebra if there exists a (B,B)-bimodule isomorphism DB ' B.

Using the proof of Proposition 3.11, we see that group algebras RG are relative symmetric R-algebras
for any commutative Noetherian ring R and finite groups G. We refer to [Yam96] for the study of
symmetric finite dimensional algebras.

Theorem 7.8. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The
following assertions are equivalent.

(a) domdim (A,R) ≥ 2 and V ' V ⊗A DA as (EndA(V ), A)-bimodules where V is a projective (A,R)-
injective-strongly faithful right module.

(b) domdim (A,R) ≥ 2 and P ' DA⊗AP as (A,EndA(P )op)-bimodules where P is a projective (A,R)-
injective-strongly faithful left module.

(c) A is the endomorphism algebra of a generator M ∈ B-mod∩R-proj satisfying DM ⊗BM ∈ R-proj
over a relative symmetric R-algebra B.

Proof. Assume that (a) holds. Let B = EndA(V ). By relative Morita-Tachikawa correspondence 4.1, V
is a left B-generator satisfying DV ⊗B V ∈ R-proj and A = EndB(V )op. In particular DA ' DV ⊗B V
as (A,A)-bimodules. Furthermore, DV ' D(V ⊗A DA) ' HomA(V,A) as (A,B)-bimodules. Thus, as
(B,B)-bimodules

DB ' V ⊗A DV ' V ⊗A HomA(V,A) ' HomA(V, V ) ' B. (151)

Hence B is a relative symmetric R-algebra. So, (c) follows.
Conversely, assume that (c) holds. Every generator over a relative symmetric algebra is a gen-

erator relative cogenerator. By relative Morita-Tachikawa correspondence 4.1, A = EndB(M)op has
domdim(A,R) ≥ 2 and M is a projective (A,R)-injective-strongly faithful right module. In particular,
DA ' DM ⊗B M as (A,A)-bimodules. Moreover, as (B,A)-bimodules

M ⊗A DA 'M ⊗A DM ⊗B M ' DB ⊗B M ' B ⊗B M 'M.

Analogously, one can show the equivalence between (b) and (c)
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By a relative gendo-symmetric R-algebra we mean a pair (A, V ) satisfying (a) and (c) of Theorem
7.8 or a pair (A,P ) satisfying (b) and (c) of Theorem 7.8.

Proposition 7.9. Let (A, V ) be a relative gendo-symmetric R-algebra. Then,

(i) DA⊗A DA ' DA as (A,A)-bimodules.

(ii) DV ' DA⊗A DV as (A,EndA(V ))-bimodules.

Proof. Let B = EndA(V ). We can identify as (A,A)-bimodules

DA⊗A DA ' DV ⊗B V ⊗A DV ⊗B V ' DV ⊗B DB ⊗B V ' DV ⊗B B ⊗B V ' DV ⊗B V ' DA.

So, (i) follows. By assumption, V ' V ⊗A DA as (B,A)-bimodules. Hence, as (A,B)-bimodules

DV ' D(V ⊗A DA) ' HomA(V,DDA) ' HomA(V,A). (152)

In particular, there exists an (A,B)-bimodule isomorphism

DA⊗A DV ' DA⊗A HomA(V,A) ' HomA(V,DA) ' HomR(V ⊗A A,R) ' DV.

Over fields, these class of algebras were introduced by Fang and Koenig in [FK11a] to give a homolog-
ical characterization of a class of algebras that generalize Schur algebras and the blocks of the category
O.

Proposition 7.9 allows us to construct a comultiplication on A in the same fashion as in [FK16]. The
advantage here is of course that the ground ring is any commutative Noetherian ring instead of a field.

A question that arises in this setup is whether the condition (i) in Proposition 7.9 is enough to deduce
that there exists V ∈ proj-A such that (A, V ) is a relative gendo-symmetric R-algebra. The difficulty lies
in fact in the construction of V . It is also unclear for the author if an algebra being symmetric can be
characterized in terms of closed points.

7.5 Classical Schur algebras

A classical reference for the study of Schur algebras (over infinite fields) is [Gre07].
Let R be a commutative ring with identity. Fix natural numbers n, d. The symmetric group on d

letters Sd acts by place permutation on the d-fold tensor product (Rn)⊗d, that is,

(v1 ⊗ · · · ⊗ vd)σ = vσ(1) ⊗ · · · ⊗ vσ(d), σ ∈ Sd, vi ∈ Rn.

We will write V ⊗dR instead of (Rn)⊗d or simply V ⊗d when the ground ring is well understood. In
particular, V ⊗d is a right module over the group algebra RSd.

Definition 7.10. [Gre07] The subalgebra EndRSd

(
V ⊗

d
)

of the endomorphism algebra EndR
(
V ⊗d

)
is

called the Schur algebra. We will denote it by SR(n, d).

We recall some facts about these algebras.
Let I(n, d) be the set of maps i : {1, . . . , d} → {1, . . . , n}. We write i(a) = ia. We can associate to

I(n, d) a right Sd-action by place permutation. In the same way, Sd acts on I(n, d)× I(n, d), by setting:

(i, j)σ = (iσ, jσ), ∀i, j ∈ I(n, d),∀σ ∈ Sd. (153)

We will write (i, j) ∼ (f, g) if (i, j) and (f, g) belong to the same Sd-orbit. Then, SR(n, d) has a basis
over R {ξi,j | (i, j) ∈ I(n, d)× I(n, d)} satisfying

ξi,j(es1 ⊗ · · · ⊗ esd) =
∑

l∈I(n,d)
(l,s)∼(i,j)

el1 ⊗ · · · ⊗ eld , (154)
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for a given basis {es1 ⊗ · · · ⊗ esd : 1 ≤ s1, . . . , sd ≤ n} of V ⊗d. In particular, ξi,j = ξf,g if and only if
(i, j) ∼ (f, g).

An immediate consequence of the existence of an R-basis for SR(n, d) satisfying (154) is the existence
of a base change property

R⊗Z SZ(n, d) ' SR(n, d). (155)

It also follows that R⊗Z V
⊗d
Z ' V ⊗dR as SR(n, d)-modules.

We will now focus on the case n ≥ d. In this case,

V ⊗d ' SR(n, d)ξ(1,...,d),(1,...,d), DV ⊗d ' ξ(1,...,d),(1,...,d)SR(n, d). (156)

Hence, V ⊗d is an SR(n, d)-projective (SR(n, d), R)-injective module.
Our aim is to compute the relative dominant dimension of SR(n, d) extending the results of Fang and

Koenig [FK11b] contained in the following Theorem.

Theorem 7.11. [FK11b, Theorem 5.1] Let K be a field.

domdimSK(n, d) =

{
2(charK − 1) if d ≥ charK > 0

+∞, otherwise.
(157)

The dominant dimension of the Schur algebra SK(n, d) is always even because the Schur algebra
SK(n, d) admits an involution fixing a complete set of primitive orthogonal idempotents.

In the following, we will show that we can compute the dominant dimension of SR(n, d) by knowing
the invertible elements of R, denoted by U(R).

Theorem 7.12. Let R be a commutative Noetherian ring. If n ≥ d, then (SR(n, d), V ⊗d) is a relative
gendo-symmetric R-algebra and

domdim (SR(n, d), R) = inf{2k ∈ N | (k + 1) · 1R /∈ U(R), k < d} ≥ 2. (158)

Proof. V ⊗dK is a projective-injective faithful SK(n, d) module for every field. By Proposition 6.4,
(SR(n, d), V ⊗d, DV ⊗d) is a RQF3 algebra. Denote by MaxSpec(R) the set of maximal ideals of m.
By Theorem 6.13,

domdim(SR(n, d), R) = inf{domdimSR(n, d)⊗R R(m)|m ∈ MaxSpec(R)} (159)

= inf{domdimSR(m)(n, d)|m ∈ MaxSpec(R)} ≥ 2. (160)

By relative Morita-Tachikawa correspondence, V ⊗d is a generator of RSd satisfying V ⊗d ⊗RSd
DV ⊗d ∈

R-proj. Therefore, (SR(n, d), V ⊗d) is a relative gendo-symmetric R-algebra because RSd is a relative
symmetric R-algebra.

Let k ∈ N such that (k+1)1R /∈ U(R) and k < d. Then, (k+1)1R ∈ m for some maximal ideal m of R.
In particular, charR(m) is positive and it is less or equal to k+ 1 ≤ d. Hence, domdimSR(m)(n, d) ≤ 2k,
for some maximal ideal m of R. This shows that

domdim (SR(n, d), R) ≤ inf{2k ∈ N | (k + 1) · 1R /∈ U(R), k < d}. (161)

In particular, if domdim (SR(n, d), R) = +∞ there is nothing more to prove.
Assume now that domdim(SR(n, d), R) = l ≥ 2. So, there exists m ∈ MaxSpec(R) such that

2(charR(m)− 1) = l, and charR(m) ≤ d. (162)
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In particular, the image of charR(m)1R in R(m) is zero and so charR(m)1R ∈ m. Hence, charR(m)1R /∈
U(R). Therefore,

l ∈ {2k ∈ N|(k + 1)1R /∈ U(R), k < d}. (163)

This finishes the proof.

Once again, we see that the invertible elements of the ground ring determine the quality of a double
centralizer property. In [Cru19], a ring having sufficiently many invertible elements under some mild
assumptions was a sufficient condition for Schur–Weyl duality to hold.

In Theorem 7.12, we saw that V ⊗d is an (SR(n, d), R)-strongly faithful module. In general for Noethe-
rian algebras, it is difficult to prove directly that a module is strongly faithful and whenever possible we
always prefer to show this property using change of rings techniques. However, it is not difficult to show
directly that V ⊗d is strongly faithful. This is the aim of the next example.

Example 7.13. Let {es1 ⊗ · · · ⊗ esd : 1 ≤ s1, . . . , sd ≤ n} be an R-basis of V ⊗d. Choose Λ to be a set of

representatives of Sd-orbits on I(n, d)× I(n, d). Define the R-map υ ∈ HomR(SR(n, d), V ⊗d
t

), satisfying

υ(ϕ) =
∑

(i,j)∈Λ

κi,j(ϕ(ej1 ⊗ · · · ⊗ ejd)), ϕ ∈ SR(n, d), (164)

with κi,j and πi,j , (i, j) ∈ Λ, being the inclusion and projection mappings of V ⊗ into the direct sum

(V ⊗d)t as SR(n, d)-modules, respectively, where t =
(
n2+d−1

d

)
. Observe that

υ(ηϕ) =
∑

(i,j)∈Λ

κi,j(ηϕ(ej1 ⊗ · · · ⊗ ejd)) =
∑

(i,j)∈Λ

ηκi,jϕ(ej1 ⊗ · · · ⊗ ejd) = ηυ(ϕ), ϕ, η ∈ SR(n, d). (165)

Thus, υ ∈ HomSR(n,d)(SR(n, d), V ⊗d
t

)). For each (i, j) ∈ Λ, define fi,j ∈ HomR(V ⊗d, SR(n, d)) satisfying

fi,j(es1 ⊗ · · · ⊗ esd) =

{
ξi,j if (s1, . . . , sd) = i

0, otherwise.
(166)

Finally, denote by ε the R-map
∑

(i,j)∈Λ fi,j ◦ πi,j ∈ HomR((V ⊗d)t, SR(n, d)). Then, the following holds,

ε ◦ υ(ξf,g) = ε

 ∑
(i,j)∈Λ

κi,jξf,g(ej1 ⊗ · · · ⊗ ejd)

 =
∑

(t,u)∈Λ

∑
(i,j)∈Λ

ft,uπt,uκi,jξf,g(ej1 ⊗ · · · ⊗ ejd) (167)

=
∑

(i,j)∈Λ

fi,jξf,g(ej1 ⊗ · · · ⊗ ejd) =
∑

(i,j)∈Λ

fi,j

 ∑
l∈I(n,d)

(l,j)∼(f,g)

el1 ⊗ · · · ⊗ eld

 (168)

=
∑

(i,j)∈Λ

∑
l∈I(n,d)

(l,j)∼(f,g)

1{i}(l)ξi,j =
∑

(i,j)∈Λ
(i,j)∼(f,g)

ξi,j = ξf,g. (169)

Therefore, υ is an (SR(n, d), R)-monomorphism. 4

7.6 q-Schur algebras

The Hecke algebra of the symmetric group (usually called the Iwahori-Hecke algebra) is obtained by a
small perturbation q on the group algebra of symmetric group. By a small perturbation q we mean
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replacing the identity of the group algebra in some of its defining relations by a non-trivial root of unity.
Although, one usually is more general and defines it for an invertible element q. Usually, the name
quantum is referred to q being a small perturbation.

Let R be a commutative ring with identity. Fix natural numbers n, d. Let u be an invertible element
of R and put q = u−2. The Iwahori-Hecke algebra HR,q(d) is the R-algebra with basis {Tσ : σ ∈ Sd}
satisfying the relations

TσTs =

{
Tσs, if l(σs) = l(σ) + 1

(u− u−1)Tσ + Tσs, if l(σs) = l(σ)− 1,
(170)

where s ∈ S := {(1, 2), (2, 3), · · · , (d − 1, d)} is a set of transpositions and l is the length function, that
is, l(σ), σ ∈ Sd, is the minimum number of simple transpositions belonging to S needed to write σ.

There are many ways to define Hecke algebras. Here, we are following the definition of Hecke algebras
according to Parshall-Wang [PW91] (but we use u instead of q and q instead of h). In [Mat99], they use
a different basis for HR,q(d) which is the same as Definition (11.3a) of [PW91]. We would also like to
point out that HR,q in Definition 4.4.1 of [DD91] is exactly HR,q(d) in our notation.

Due to the relations (170), Ts, s ∈ S, generates as algebra HR,q(d).
The Iwahori-Hecke algebra HR,q(d) admits a base change property.

HR,q(d) ' R⊗Z[u,u−1] HZ[u,u−1],u−2(d) (171)

Under this isomorphism of R-algebras 1R ⊗Z[u,u−1] Tσ is mapped to Tσ ∈ HR,q(d).

We can regard V ⊗d as right HR,q(d)-module by imposing to an R-basis {ei1 ⊗ · · · ⊗ eid | i ∈ I(n, d)}
of V ⊗d,

ei1 ⊗ · · · ⊗ eid · Ts =


ei1 ⊗ · · · ⊗ eid · s if it < it+1

uei1 ⊗ · · · ⊗ eid if it = it+1

(u− u−1)ei1 ⊗ · · · ⊗ eid + ei1 ⊗ · · · ⊗ eid · s if it > it+1

, s =(t, t+ 1) ∈ S,

(172)1 ≤ t < d.

By considering q = 1, we recover the action on V ⊗d of the symmetric group by place permutation.

Definition 7.14. The subalgebra EndHR,q(d)

(
V ⊗

d
)

of the endomorphism algebra EndR
(
V ⊗d

)
is called

the q-Schur algebra. We will denote it by SR,q(n, d).

The q-Schur algebras were introduced by Dipper and James [DJ91, DJ89].
By [Du92, 2.d] (see also [DD91, Lemma 4.4.3 ]) SR,q(n, d) = SR,u−2(n, d) is isomorphic to the q-Schur

algebra of Dipper and James [DJ91].
It is now a good opportunity to exhibit an R-basis of V ⊗d⊗HR,q(d) DV

⊗d. By dualizing such R-basis
we will obtain an R-basis for SR,q(n, d). Note, once more, that in general if EndB(M) has an R-basis
nothing can be said about DM ⊗B M , M ∈ B-mod.

Lemma 7.15. Let {e∗i1 ⊗ · · · ⊗ e
∗
id
| i ∈ I(n, d)} be an R-basis of DV ⊗d. DV ⊗d is a left HR,q(d)-module

with action

Ts · e∗i1 ⊗ · · · ⊗ e
∗
id

=


s · e∗i1 ⊗ · · · ⊗ e

∗
id

if it < it+1

ue∗i1 ⊗ · · · ⊗ e
∗
id

if it = it+1

(u− u−1)e∗i1 ⊗ · · · ⊗ e
∗
id

+ s · e∗i1 ⊗ · · · ⊗ e
∗
id

if it > it+1

, s =(t, t+ 1) ∈ S,
1 ≤ t < d.

We can associate to I(n, d)× I(n, d) the lexicographical order. Each Sd-orbit of I(n, d)× I(n, d) has
a representative (i, j) satisfying (i1, j1) ≤ · · · ≤ (id, jd).
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Proposition 7.16. V ⊗d ⊗HR,q(d) DV
⊗d is a free R-module with basis

{ei1 ⊗ · · · ⊗ eid ⊗HR,q(d) e
∗
j1 ⊗ · · · ⊗ e

∗
jd

: i, j ∈ I(n, d), (i1, j1) ≤ · · · ≤ (id, jd)}. (173)

Proof. Since {ei1 ⊗ · · · ⊗ eid | i ∈ I(n, d)} is an R-basis of V ⊗d and {e∗j1 ⊗ · · · ⊗ e
∗
jd
| j ∈ I(n, d)} is

an R-basis of DV ⊗d the set {ei1 ⊗ · · · ⊗ eid ⊗HR,q(d) e
∗
j1
⊗ · · · ⊗ e∗jd |i, j ∈ I(n, d)} generate (over R)

V ⊗d ⊗HR,q(d) DV
⊗d.

Denote by Λ the set

Λ := {(i, j) ∈ I(n, d)× I(n, d) : (i1, j1) ≤ · · · ≤ (id, jd)}. (174)

Let (l, s) ∈ I(n, d) × I(n, d). Assume that (l, s) /∈ Λ. Then, there exists 1 ≤ k < d such that (lk, sk) 6≤
(lk+1, sk+1). Hence, either lk > lk+1 or lk = lk+1 and sk > sk+1. Assume that lk > lk+1. Take
i = l · (k, k + 1) and ω = (k, k + 1). Then, ik < ik+1 and

el1 ⊗ · · · ⊗ eld = (ei1 ⊗ · · · ⊗ eid) · (k, k + 1) = ei1 ⊗ · · · ⊗ eid · Tω. (175)

Hence,

el1 ⊗ · · · ⊗ eld ⊗HR,q(d) e
∗
s1 ⊗ · · · ⊗ e

∗
sd

= ei1 ⊗ · · · ⊗ eid · Tω ⊗HR,q(d) e
∗
s1 ⊗ · · · ⊗ e

∗
sd

(176)

= ei1 ⊗ · · · ⊗ eid ⊗HR,q(d) Tωe
∗
s1 ⊗ · · · ⊗ e

∗
sd

(177)

Therefore, we can write el1⊗· · ·⊗eld⊗HR,q(d)e
∗
s1⊗· · ·⊗e

∗
sd

as a linear combination of elements ei⊗HR,q(d)e
∗
f

where i1 ≤ . . . ik ≤ ik+1, i, f ∈ I(n, d). Now, assume that lk = lk+1 and sk > sk+1 for some k. Put
j = s · ω, ω = (k, k + 1). Then, jk < jk+1 and

el1 ⊗ · · · ⊗ eld ⊗HR,q(d) e
∗
s1 ⊗ · · · ⊗ e

∗
sd

= el1 ⊗ · · · ⊗ eld ⊗HR,q(d) ωe
∗
j1 ⊗ · · · ⊗ e

∗
jd

(178)

= el1 ⊗ · · · ⊗ eld ⊗HR,q(d) Tωe
∗
j1 ⊗ · · · ⊗ e

∗
jd

(179)

= el1 ⊗ · · · ⊗ eldTω ⊗HR,q(d) e
∗
j1 ⊗ · · · ⊗ e

∗
jd

(180)

= uel1 ⊗ · · · ⊗ eld ⊗HR,q(d) e
∗
j1 ⊗ · · · ⊗ e

∗
jd
. (181)

So, we can order the elements (for example using Bubble sort) (l, s) ∈ I(n, d) × I(n, d) into (i, j) ∈
I(n, d) × I(n, d) with (i, j) ∈ Λ and we obtain that each element el1 ⊗ · · · ⊗ eld ⊗HR,q(d) e

∗
s1 ⊗ · · · ⊗ e

∗
sd

,
s, l ∈ I(n, d) can be written as a linear combination of elements ei1⊗· · ·⊗eid⊗HR,q(d)e

∗
j1
⊗· · ·⊗e∗jd , i, j ∈ Λ.

Moreover, the coefficients appearing in this linear combination belong to the image of Z[u, u−1] → R.

Denote these coefficients by pl,si,j(u). We claim that our desired set is linearly independent. For each

(i, j) ∈ Λ, we define the map ψi,j : V ⊗d ×DV ⊗d → R satisfying

ψi,j =
∑

l,s∈I(n,d)

pl,si,j(u)(el, e
∗
s)
∗, (182)

where (el, e
∗
s)
∗ is the dual element of (el, e

∗
s). So, this map is R-bilinear. By construction, the coefficients

pl,si,j(u) satisfy the following relations: For each ω = (k, k + 1), we have
pl,sωi,j (u) = uplω,si,j (u) if lt = lt+1, st < st+1

plω,si,j (u) = pl,sωi,j (u) if lt < lt+1, st < st+1

plω,si,j (u) = upl,si,j(u) if lt < lt+1, st = st+1

plω,si,j (u) = (u− u−1)pl,si,j(u) + pl,sωi,j (u) if lt < lt+1, st > st+1

. (183)

58



We are now ready to check that ψi,j satisfies the relation ψi,j(efTω, e
∗
g) = ψi,j(ef , Tωe

∗
g) for all f, g ∈

I(n, d). For f, g ∈ I(n, d) and ω = (t, t+ 1),

ψ(efTω, e
∗
g) =



∑
l,s∈I(n,d)

pl,si,j(u)1{(fω,g)}(l, s) if ft < ft+1∑
l,s∈I(n,d)

pl,si,j(u)1{(f,g)}(l, s)u if ft = ft+1∑
l,s∈I(n,d)

pl,si,j(u)1{(f,g)}(l, s)(u− u−1) + pl,si,j(u)1{(fω,g)}(l, s) if ft > ft+1

(184)

=


pfω,gi,j (u) if ft < ft+1

upf,gi,j (u) if ft = ft+1

(u− u−1)pf,gi,j (u) + pfω,gi,j (u) if ft > ft+1

. (185)

On the other hand,

ψ(ef , Tωe
∗
g) =


pf,gωi,j (u) if gt < gt+1

upf,gi,j (u) if gt = gt+1

(u− u−1)pf,gi,j (u) + pf,gωi,j (u) if gt > gt+1

. (186)

Using the relations (183) we obtain our claim. Hence, ψi,j induces a unique map ψ′i,j : V ⊗d ⊗HR,q(d)

DV ⊗d → R, satisfying

ψ′i,j(ef ⊗HR,q(d) e
∗
g) = pf,gi,j (u), f, g ∈ I(n, d). (187)

In particular ψ′i,j(ei ⊗HR,q(d) e
∗
j ) = 1 and ψ′i,j(ef ⊗HR,q(d) e

∗
g) = 0 for all (f, g) ∈ Λ distinct from (i, j).

This shows that (173) is an R-basis of V ⊗d ⊗HR,q(d) DV
⊗d.

The dual elements of ei⊗HR,q(d) e
∗
j , (i, j) ∈ Λ, denoted by ξj,i ∈ D(V ⊗d⊗HR,q(d)DV

⊗d) ' SR,q(n, d),
form an R-basis of the q-Schur algebra. Moreover, (by a tensor-hom adjunction argument)

e∗g(ξj,i(ef )) = ψ′i,j(ef ⊗HR,q(d) e
∗
g) = pf,gi,j (u), f, g ∈ I(n, d). (188)

Thus, we can write

ξj,i(ef ) =
∑

f∈I(n,d)

pf,gi,j (u)eg, ∀f ∈ I(n, d). (189)

Using our approach to a basis of the q-Schur algebra it is clear that the q-Schur algebra admits a base
change property.

Lemma 7.17. Let R be a commutative ring with an invertible element u. Fix q = u−2. For any
commutative R-algebra S,

SR,q(n, d) ' R⊗Z[u,u−1] SZ[u,u−1],u−2(n, d), (190)

SS,q1S
(n, d) ' S ⊗R SR,q(n, d). (191)

Proof. Since V ⊗d ⊗HR,q(d) DV
⊗d is a free R-module and HR,q(d) admit a base change property the

q-Schur algebra SR,q(n, d) has also a base change property:

SS,q1S
(n, d) ' S ⊗R SR,q(n, d). (192)

The first equation follows by fixing R = Z[u, u−1].
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We will now focus on the case n ≥ d. There are isomorphisms,

V ⊗d ' SR,q(n, d)ξ(1,...,d),(1,...,d), DV ⊗d ' ξ(1,...,d),(1,...,d)SR,q(n, d). (193)

Hence, V ⊗d is an SR,q(n, d)-projective (SR,q(n, d), R)-injective. Note that these facts follow by extending
the results of Donkin (see [Don98]) to commutative rings. In particular, the arguments of the results
[Don98, Section 2.1 (5), (6),(7)] can easily be extended to commutative rings. Alternatively, we can see
these facts as applications of Proposition 6.3 and Nakayama’s Lemma.

For the Schur algebra, the dominant dimension is directly related with the characteristics of the
residue fields of the ground ring. So, it is natural to consider a quantum version of the characteristic of
the ring. This is done by replacing the identity by q on the definition of characteristic of a ring.

Definition 7.18. The q-characteristic of R, denoted by q charR, is the smallest positive number s such
that 1 + q + · · ·+ qs−1 = 0 if such s exists, and zero otherwise.

We shall refer to q charR as the quantum characteristic of R when there is no misunderstanding about
q. Note that (1 − q)(1 + q + · · · + qs−1) = 1 − qs, for all s > 0. So, for integral domains the quantum
characteristic is zero if and only if either q is not a root of unity or q = 1 and charR = 0. We refer to
[LQ13] for a more detailed discussion of quantum characteristic.

The computation of dominant dimension for quantised Schur algebras over fields is due to Fang and
Miyachi.

Theorem 7.19. [FM19, Theorem 3.13] Let K be a field. Assume that q = u−2 for some non-zero
element u ∈ K.

domdimSK,q(n, d) =

{
2(q charK − 1) if d ≥ q charK > 0

+∞, otherwise.
(194)

We will now extend this computation for all q-Schur algebras satisfying n ≥ d. Further, we can
determine the relative dominant dimension of the q-Schur algebra by knowing the invertible elements of
R.

Theorem 7.20. Let R be a commutative ring with invertible element u ∈ R. Put q = u−2. If n ≥ d,
then (SR,q(n, d), V ⊗d) is a relative gendo-symmetric R-algebra and

domdim(SR,q(n, d), R) = inf{2s ∈ N | 1 + q + · · ·+ qs /∈ U(R), s < d}. (195)

Proof. By Proposition 6.3, V ⊗d is a projective (SR,q(n, d))-injective-strongly faithful module. Hence,
(SR,q(n, d), V ⊗d, DV ⊗d) is a RQF3 algebra. Let MaxSpec(R) be the set of maximal ideals of R.

By Theorem 6.13,

domdim(SR,q(n, d), R) = inf{domdimSR,q(n, d)⊗R R(m)|m ∈ MaxSpec(R)} (196)

= inf{domdimSR(m),qm(n, d)|m ∈ MaxSpec(R)} ≥ 2, (197)

where qm is the image of q in R(m). In particular, V ⊗d is a generator-cogenerator of HR,q(d). Similarly
to Proposition 3.11, we can define an R-linear map π : HR,q(d)→ R, given by

π(Tσ) =

{
1R, if σ = e

0, otherwise
, σ ∈ Sd.

Afterwards, we can define the HR,q(d)-isomorphism φ : HR,q(d) → DHR,q(d), given by φ(Tσ)(Tω) =
π(TσTω) for every σ, ω ∈ Sd. This yields that the Hecke algebra HR,q(d) is a relative symmetric R-
algebra. By Theorem 7.8, (SR,q(n, d), V ⊗d) is a relative gendo-symmetric R-algebra. First, we will show
that

domdim(SR,q(n, d), R) ≤ inf{2s ∈ N | 1 + q + · · ·+ qs /∈ U(R), s < d}. (198)
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If the right hand side is infinite, then there is nothing to prove. Assume that there exists s < d such that
1 + q + · · ·+ qs /∈ U(R). Then, 1 + q + · · · + qs belongs to some maximal ideal of R, say m. Therefore,
1 + qm + . . .+ qsm is zero in R(m). Assume that qm = 1 in R(m). Then, 0 6= qm charR(m) = charR(m) ≤
s+ 1 ≤ d− 1 + 1 = d, so domdimSR(m),qm(n, d) ≤ 2s. Now, assume that qm 6= 1. Then,

0 < qm charR(m) ≤ s+ 1 ≤ d− 1 + 1 = d. (199)

Hence,

domdim(SR(m),qm(n, d), R) = 2(qm char−1) ≤ 2s. (200)

So, our claim follows. If domdim (SR,q(n, d), R) is infinite, then, of course, that the equality (195) holds.
Suppose that domdim(SR,q(n, d), R) = l > 0. So, there exists a maximal ideal m of R such that

l = domdimSR(m),qm(n, d) = 2(qm charR(m)− 1), (201)

and 0 < qm charR(m) ≤ d. By definition of quantum characteristic, the image of 1+q+· · ·+qqm charR(m)−1

in R(m) is zero. So, 1 + q + · · ·+ qqm charR(m)−1 belongs to m. Since qm charR(m)− 1 ≤ d− 1 < d then
l ∈ {2s ∈ N | 1 + q + · · ·+ qs /∈ U(R), s < d}. This finishes the proof.

We can now compute domdim(SZ[u,u−1],u−2(n, d),Z[u, u−1]). The invertible elements of Z[u, u−1] are
the powers of u and the constants 1 and −1. Hence, 1 + q = 1 + u−2 is not invertible. So,

domdim(SZ[u,u−1],u−2(n, d),Z[u, u−1]) = 2, d ≥ 2. (202)

A Appendix On Spectral sequences

In most cases, the computation of Ext and Tor groups is not done directly by the definition since it is
not practical. Instead, spectral sequences provide useful ways to compute homology and cohomology of
complexes. For a more detailed approach, we refer to ([Wei03], [Rot09]).

Definition A.1. A (homology) spectral sequence (starting with Ea) in an abelian category A
consists of the following data:

• For r ≥ a, the r-page is a collection of objects of A {Eri,j}, i, j ∈ Z.

• Maps dri,j : Eri,j → Eri−r,j+r−1 satisfying dri,j ◦ dri+r,j−r+1 = 0 and Er+1
i,j = ker dri,j/im dri+r,j−r+1.

If Eri,j = 0 unless i ≥ 0 and j ≥ 0, then we say that {Eri,j} is a first quadrant homology spectral
sequence.

Hence the (r+1)-page contains the homology of the differential of the r-page. If the value at (i, j)-spot
stabilizes from some page on, then we denote this value by E∞i,j .

Definition A.2. We say that a first quadrant (homology) spectral sequence converges to H∗, written as

Eai,j =⇒ Hi+j

if we are given a collection of objects Hn of A, each having a finite filtration

0 = H−1
n ⊂ H0

n ⊂ H1
n ⊂ · · · ⊂ Hn

n = Hn

such that E∞i,n−i ' Hi
n/H

i−1
n for 0 ≤ i ≤ n.

Lemma A.3. Assume that E2
i,j =⇒ Hi+j is a first quadrant spectral sequence. Then, there is an exact

sequence

H2 → E2
2,0 → E2

0,1 → H1 → E2
1,0 → 0. (203)
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Proof. By convergence, we have the filtration

0 = H−1
1 ⊂ H0

1 ⊂ H1
1 = H1. (204)

with E∞1,0 ' H1
1/H

0
1 and E∞0,1 ' H0

1/H
−1
1 = H0

1 . In particular, there is an exact sequence

0→ E∞0,1 → H1 → E∞1,0 → 0. (205)

Let n ≥ 2. Then,

En+1
1,0 = ker

(
dn1,0 : En1,0 → En1−n,n−1

)
/im

(
dn1+n,1−n : En1+n,−n+1 → En1,0

)
(206)

= En1,0. (207)

By induction, En1,0 = E2
1,0 for n ≥ 2. By definition, E∞1,0 = E2

1,0. We will now compute E∞0,1. For n ≥ 3,

En+1
0,1 = ker dn0,1/im dnn,2−n = ker dn0,1 = ker(En0,1 → En−n,n) = En0,1. (208)

By induction, it follows that

E∞0,1 = E3
0,1 = ker d2

0,1/im d2
2,0 = E2

0,1/im(E2
2,0 → E2

0,1) = coker(E2
2,0 → E2

0,1). (209)

Now, E∞2,0 = H2
2/H

1
2 = H2/H

1
2 . For n ≥ 2,

En+1
2,0 = ker dn2,0/im dn2+n,1−n = ker(En2,0 → En2−n,n−1). (210)

Therefore, E∞2,0 = ker(E2
2,0 → E2

0,1). We constructed an exact sequence

H2 E2
2,0 E2

0,1 H1 E2
1,0 0

E∞2,0 E∞0,1

.

Lemma A.4. Let q ≥ 1. Assume that E2
i,j =⇒ Hi+j is a first quadrant spectral sequence and E2

i,j = 0

for 1 ≤ j ≤ q. Then, E2
i,0 ' Hi, 1 ≤ i ≤ q and there is an exact sequence

Hq+2 → E2
q+2,0 → E2

0,q+1 → Hq+1 → E2
q+1,0 → 0. (211)

Proof. We will start by showing by induction that Esi,j = 0 for every s ≥ 2, 1 ≤ j ≤ q and every i ≥ 0.

Let 1 ≤ j ≤ q and i ≥ 0. The case s = 2 follows by assumption. Assume that Ei,jl = 0 for some s ≥ 2
and l ≤ s. Then,

Es+1
i,j = ker dsi,j/im dsi+s,j−s+1 = 0, (212)

since by induction ker dsi,j ⊂ Esi,j = 0 and thus ker dsi,j = 0.
Therefore, Esi,j = 0 for every s ≥ 2, 1 ≤ j ≤ q and every i ≥ 0. In particular,

E∞i,j = 0, 1 ≤ j ≤ q, i ≥ 0. (213)

Since 1 − s is a negative value, Esi+s,1−s = 0 and thus im dsi+s,−s+1 = 0. If s ≤ q + 1 or i + 1 ≤ s, then

Ei−s,s−1
s = 0. For s ≤ q + 1 or i+ 1 ≤ s, we have

Es+1
i,0 = ker

(
dsi,0 : Esi,0 → Esi−s,s−1

)
/im dsi+s,−s+1 = Esi,0. (214)
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In particular, by an induction argument

Eq+2
q+2,0 = Eq+1

q+2,0 = E2
q+2,0 (215)

Es+1
i,0 = Esi,0 = E2

i,0,∀s ≥ 2, 1 ≤ i ≤ q + 1. (216)

Thus,

E∞i,0 = E2
i,0, 1 ≤ i ≤ q + 1. (217)

For s ≥ q + 3, we have Eq+2−s,s−1
s = 0 and thus ker dsq+2,0 = Esq+2,0.

Therefore, we have

Es+1
q+2,0 = ker dsq+2,0/im dsq+2+s,−s+1 = Esq+2,0, s ≥ q + 3 and (218)

E∞q+2,0 = Eq+3
q+2,0 = ker dq+2

q+2,0/im dq+2
q+2+(q+2),−(q+2)+1 = ker

(
dq+2
q+2,0 : Eq+2

q+2,0 → Eq+2
0,q+1

)
(219)

=
(215)

ker
(
E2
q+2,0 → Eq+2

0,q+1

)
. (220)

Now we are ready to establish E2
n,0 ' Hn, 1 ≤ n ≤ q.

Let 1 ≤ n ≤ q and 1 ≤ i ≤ n− 1. Then, 1 ≤ n− i ≤ q. Hence by convergence and (213)

0 = E∞i,n−i ' Hi
n/H

i−1
n , and (221)

Hn−1
n = Hn−2

n = H0
n ' E∞0,n =

(213)
0 (222)

Hn = Hn
n = Hn

n Hn−1
n ' E∞n,0 =

(217)
E2
n,0. (223)

Now we shall proceed to construct the desired exact sequence. By the filtration given by convergence, we
have for any n ≥ 0, E∞n,0 ' Hn

n/H
n−1
n = Hn/H

n−1
n . Thus, we have a canonical epimorphism Hn � E∞n,0

with kernel Hn−1
n for any n ≥ 0. In particular, we have the exact sequence and the epimorphism

0→ Hq
q+1 → Hq+1 → E∞q+1,0 =

(217)
E2
q+1,0 → 0, Hq+2 � E∞q+2,0 (224)

For 2 ≤ s ≤ q + 1, 1 ≤ q + 2 − s ≤ q. Hence Ess,q+2−s = 0, for 2 ≤ s ≤ q + 1. Consequently,
im dss,q+2−s = 0, for 2 ≤ s ≤ q + 1. Therefore, for 2 ≤ s ≤ q + 1,

Es+1
0,q+1 = ker

(
Es0,q+1 → Es−s,q+2−s

)
= Es0,q+1. (225)

We conclude that

Eq+2
0,q+1 = Eq+1

0,q+1 = E2
0,q+1. (226)

In view of (220),

E∞q+2,0 = ker
(
E2
q+2,0 → E2

0,q+1

)
(227)

For s ≥ q + 3, im dss,q+2−s = 0, and thus

Es+1
0,q+1 = ker ds0,q+1/im dss,q+2−s = ker

(
ds0,q+1 : Es0,q+1 → Es−s,q+s

)
= Es0,q+1. (228)

Therefore, E∞0,q+1 = Eq+3
0,q+1.

By (213) and using the filtration given by convergence for 1 ≤ i ≤ q

0 = E∞i,q+1−i = Hi
q+1/H

i−1
q+1. (229)
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This gives us

Hq
q+1 = Hq−1

q+1 = H0
q+1 = E∞0,q+1 = Eq+3

0,q+1 = ker dq+2
0,q+1/im dq+2

q+2,0 (230)

= Eq+2
0,q+1/im

(
Eq+2
q+2,0 → Eq+2

0,q+1

)
=

(226,215)
E2

0,q+1/im
(
E2
q+2,0 → E2

0,q+1

)
. (231)

Combining (231), (224) and (227) we obtain the exact sequence

Hq+2 E2
q+2,0 E2

0,q+1 Hq+1 E2
q+1,0 0

E∞q+2,0 Hq
q+1

.

Lemma A.5. (Künneth spectral sequence for chain complexes) Let P be a flat chain complex of R-
modules · · · → P1 → P0 → 0. Let M be an R-module. Then,

E2
i,j = TorRi (Hj(P ),M) =⇒ Hi+j(P ⊗RM), i, j ≥ 0.

Proof. See for example [Wei03, Theorem 5.6.4].
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