An integral theory of dominant dimension of Noetherian algebras

Tiago Cruz

Abstract

Dominant dimension is introduced into integral representation theory, extending the classical theory of dominant dimension of Artinian algebras to projective Noetherian algebras (that is, algebras which are finitely generated projective as modules over a commutative Noetherian ring). This new homological invariant is based on relative homological algebra introduced by Hochschild in the 1950s. Amongst the properties established here are a relative version of the Morita-Tachikawa correspondence and a relative version of Mueller's characterization of dominant dimension. The behaviour of relative dominant dimension of projective Noetherian algebras under change of ground ring is clarified and we explain how to use this property to determine the relative dominant dimension of projective Noetherian algebras. In particular, we determine the relative dominant dimension of Schur algebras and quantized Schur algebras.

Keywords: relative dominant dimension, relative Morita-Tachikawa correspondence, dominant dimension of Schur algebras and q-Schur algebras, strongly faithful modules. 2020 Mathematics Subject Classification: 16E10, 16G30, 16E30, 16P40, 20G43

1 Introduction

An Artinian algebra is said to have dominant dimension at least n if the first n terms of an injective coresolution of the regular module are projective modules. In particular, it has positive dominant dimension if it admits a faithful projective-injective module. Dominant dimension has been proven to be a very useful tool to establish a connection between two algebras playing an important role in many correspondences in representation theory of Artinian algebras: for instance, the Morita-Tachikawa correspondence [Mue68, Theorem 2], Auslander's correspondence Aus71, Iyama's Higher Auslander correspondence Iya07. Auslander's correspondence is a crucial result in representation theory of Artinian algebras providing a bijection between Artinian algebras of finite type and Artinian algebras with dominant dimension at least two and global dimension at most two. Many versions of Schur-Weyl duality and other double centralizer properties involve algebras having dominant dimension at least two (KSX01, Tac73, (7.1)]). Moreover, dominant dimension gives computation-free proofs of double centralizer properties in contrast to more traditional methods. As in [DDPW08, chapter 9], many double centralizer properties of interest also hold in the integral setup which is no longer an Artinian algebra. Unfortunately, so far, dominant dimension has not been used in these integral setups since the definition of dominant dimension for Artinian algebras does not carry over for Noetherian algebras. Indeed, projective-injective modules rarely exist for Noetherian algebras. Over the years, there were some approaches to extending dominant dimension by replacing the projective modules by flat (see Hos89) or even torsionless (see [Kat68) modules. But, these notions do not provide much information in applications. In particular, they do not seem to be very useful to evaluate the connection between two Noetherian algebras. Our aim in this paper is to introduce a new generalization of dominant dimension for algebras which are finitely generated projective as modules over a Noetherian ring. This generalization is suitable for computations and it has the properties that a dominant dimension must have (see Mue68). For instance, it is left-right symmetric and there is a characterization of dominant dimension using homological algebra. In doing so,
we dramatically increase the classical theory of dominant dimension to also include problems of integral representation theory. Moreover, this concept will help us, also in forthcoming work, reducing problems of integral representation theory to problems of finite dimensional algebras over algebraically closed fields and vice-versa.

This new relative dominant dimension of Noetherian algebras is based on relative injective modules instead of (absolute) injective modules (see Definition 3.1). The term relative means that we consider only the exact sequences over Noetherian algebras which split over the ground ring of the Noetherian algebra. This leads us to introduce other concepts like strongly faithful modules (see Definition 3.5) and also allows us to adapt the arguments used in the classical theory to work for Noetherian algebras. Here, strongly faithful modules replace the role that faithful modules have in classical theory of dominant dimension.

To simplify the language, by a projective Noetherian algebra we will mean an algebra which is finitely generated projective as module over a commutative Noetherian ring. At a first glance, we may think that it would be enough to simply replace the assumption of Artinian by Noetherian once this new definition of dominant dimension is in place. But this is not the case as we can see in the following relative version of the Morita-Tachikawa correspondence:

Theorem (see Theorem 4.1). Let R be a commutative Noetherian ring. There is a bijection:

Here, a module being a generator means that its additive closure contains the regular module and D denotes the functor $\operatorname{Hom}_{R}(-, R)$. Further, we see that, in this relative setup, we are only interested in the generators whose additive closure contains also all relative injective modules and with this extra property $D M \otimes_{B} M \in R$-proj. This property ensures that the module M is strongly faithful over its endomorphism algebra. But, most importantly we will see in Theorem 6.14 that this property is equivalent to requiring a base change property on the endomorphism algebra of the generator. Integral Schur algebras, for example, possess this property. This extra condition reinforces the idea that using dominant dimension provides characteristic-free proofs for double centralizer properties also in the integral setup. For projective Noetherian algebras over a commutative Noetherian ring with Krull dimension at most one, this version of relative Morita-Tachikawa correspondence can be modified to not include the property $D M \otimes_{B} M \in R$-proj. In particular, the correspondence established by Auslander and Roggenkamp in AR72 involving semisimple orders of finite lattice type is a special case of such a version of relative Morita-Tachikawa without $D M \otimes_{B} M \in R$-proj (see Theorem 7.3 and 4.3).

Another big difference with the classical case is visible in the relative version of a theorem by Mueller where we are forced to use Tor functors instead of Ext functors.

Theorem (see Theorem 5.2. Let A be a projective Noetherian R-algebra with positive relative dominant dimension and with V a projective (A, R)-injective-strongly faithful right A-module. Fix $C=\operatorname{End}_{A}(V)$. For any left A-module M being R-projective, the following assertions are equivalent.
(i) $\operatorname{domdim}_{(A, R)} M \geq n \geq 2$;
(ii) The map $\operatorname{Hom}_{A}(V, D M) \otimes_{C} V \rightarrow D M$, given by $f \otimes v \mapsto f(v)$, is an isomorphism and for each $1 \leq i \leq n-2, \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$.

A main property of relative dominant dimension of projective Noetherian algebras establishing a connection with the Artinian case is the following:

Theorem (see Theorem6.13). Let A be a projective Noetherian R-algebra with positive relative dominant dimension. Let $M \in A$-mod $\cap R$-proj. Then

$$
\operatorname{domdim}_{(A, R)} M=\inf \left\{\operatorname{domdim}_{A(\mathfrak{m})} M(\mathfrak{m}): \mathfrak{m} \text { maximal ideal in } R\right\} .
$$

As an application of the theory developed here, we can extend the notions of Morita and gendosymmetric algebras to Noetherian algebras. Further, we remark that there are many algebras with origins in invariant theory and Lie theory that can be covered by our approach that we present here. Not to mention many algebras arising in deformation theory. In particular, in this paper we compute the relative dominant dimension of Schur algebras $S_{R}(n, d)$ (when $n \geq d$) and q-Schur algebras in the integral setup, that is, when R is an arbitrary commutative Noetherian ring using the methods introduced in this paper.

The paper is structured as follows:
In section 2 we recall some notation and folklore results for Noetherian algebras. In subsection 2.3, we give a brief introduction to relative homological algebra with respect to (A, R)-exact sequences giving emphasis to relative injective modules. In section 3, we introduce the definition of relative dominant dimension for projective Noetherian algebras and the notion of strongly faithful module. We explain that for relative self-injective algebras the latter is exactly the notion of generator. In subsection 3.4, we present an alternative definition of relative dominant dimension based on the existence of a projective relative injective strongly faithful module. In subsection 3.5, we establish the equivalence of relative dominant dimension greater or equal than two with a stronger type of double centralizer property on a strongly faithful module, namely $D V \otimes_{C} V \simeq D A$. Along the way, we reprove many technical results which are well known for projective left ideals in the classical case. In section 4 , we prove a relative version of Morita-Tachikawa correspondence which is valid for all projective Noetherian algebras. For the cases of Krull dimension one, a weaker version of the relative Morita-Tachikawa is also considered. In section 5. we give a generalization of Mueller's characterization of dominant dimension for the relative dominant dimension of modules that are projective over the ground ring. When the Krull dimension of the ground ring is one, these modules are known as lattices. We initiate here the study of the influence of the Krull dimension of the ground ring in the theory of relative dominant dimension of a projective Noetherian algebra. In subsection 5.1, we obtain more properties of relative dominant dimension including its rightleft symmetry. In section 6, we explore the behaviour of relative dominant dimension under change of ground rings culminating in the proof of one of the main results of this paper, Theorem 6.13, clarifying the meaning behind the property $D M \otimes_{B} M \in R$-proj. In section 7 we aim to exhibit the usefulness of relative dominant dimension in practice. We observe that some old results like homological characterizations of lattices of finite type can be written in terms of relative dominant dimension. We can also see that both, properties of Artinian algebras and classes of such algebras, can be further extended to the realm of Noetherian algebras. In subsections 7.5 and 7.6 , we conclude this paper computing the relative dominant dimension of Schur algebras and q-Schur algebras showing, in particular, how strongly faithful modules and the property $D M \otimes_{B} M \in R$-proj appear in applications. A small appendix involving spectral sequences is attached for a better understanding of Theorem 6.13 .

In forthcoming work based on the current paper, the technology introduced here will be used to deduce results on cover theory of Noetherian algebras.

2 Noetherian algebras and relative homological algebra

In this section, we will introduce the notation to be used throughout this paper and provide some elementary results involving standard duality with respect to a Noetherian ring to be used several times in the results ahead. The tensor product is shown to commute with extension of scalars (Proposition 2.3 and homomorphisms from a projective A-module to another module also commute with extension of scalars (Proposition 2.4). Afterwards, we will discuss the class of (A, R)-exact sequences in 2.3 together
with the projective and injective objects with respect to this class of exact sequences. This constitutes the background for the concept of relative dominant dimension of Noetherian algebras.

2.1 Noetherian Algebras

Let R be a commutative Noetherian ring with identity. A is called a Noetherian R-algebra if A is an algebra over R such that A is finitely generated as an R-module. By a projective Noetherian R-algebra we mean a Noetherian R-algebra A so that A is a finitely generated projective R-module.

Throughout this paper, R will be a commutative Noetherian ring with identity and A will always be a projective Noetherian R-algebra, unless stated otherwise.

By a generator of A (or R) we mean a module whose additive closure contains the regular module. Observe that if A is a Noetherian R-algebra which is free over R, then A is a faithful over R. In such a case R is contained in the center of A. By A-mod we mean the category of finitely generated left A-modules and by A-proj the full subcategory of A-mod whose modules are the finitely generated projective A-modules. By an A-projective finitely generated module we mean a finitely generated projective A-module. We denote by $\operatorname{add}_{A} M$ (or just add M when A is fixed) the full subcategory of A-mod whose modules are direct summands of finite direct sums of $M \in A$-mod. We write A-proj to denoteadd A. Similarly, mod- A and $\operatorname{proj}-A$ denote the previous subcategories but for right modules. By A-Mod we mean the category of left A-modules and by $\operatorname{Add}_{A} M$ the full subcategory of A-Mod whose modules are direct summands of direct sums of $M \in A$-Mod. For any $M \in A$ - \bmod and $f, g \in \operatorname{End}_{A}(M)$ the multiplication $f g$ is the composite $f \circ g$ of g and f. The opposite algebra of A will be denoted by $A^{o p}$.

By D we mean the standard duality functor $\operatorname{Hom}_{R}(-, R): A-\bmod \rightarrow A^{o p}$-mod. For each prime ideal \mathfrak{p} of R, we denote by $R_{\mathfrak{p}}$ the localization of R at \mathfrak{p}. For each $M \in A$-mod, $M_{\mathfrak{p}}$ is the localization of M at the prime ideal \mathfrak{p}. In particular, $M_{\mathfrak{p}} \simeq R_{\mathfrak{p}} \otimes_{R} M$. By $R(\mathfrak{p})$ we mean the residue field $R_{\mathfrak{p}} / \mathfrak{p}_{\mathfrak{p}}$ associated to the prime ideal \mathfrak{p} of R. For maximal ideals \mathfrak{m} of R the residue field $R(\mathfrak{m})$ is also isomorphic to R / \mathfrak{m}. For more properties on localizations of rings, we refer to Coh89, 11.3]

Given a finitely generated (A, B)-bimodule M, there is a double centralizer property on M between A and B provided that the multiplication maps on M induce isomorphisms $A \simeq \operatorname{End}_{B}(M)$ and $B \simeq \operatorname{End}_{A}(M)^{o p}$.

The following results are quite elementary and folklore but they will be used several times throughout this paper.

Proposition 2.1. Let A be a projective Noetherian R-algebra. Assume $M, N \in A$ - $\bmod \cap R$-proj. Then, the map $\kappa_{M, N}: \operatorname{Hom}_{A}(M, N) \rightarrow D\left(D N \otimes_{A} M\right)$, given by $\kappa(g)(f \otimes m)=f(g(m)), g \in \operatorname{Hom}_{A}(M, N)$, $f \in D N, m \in M$, is an $\left(\operatorname{End}_{A}(M)^{o p}, \operatorname{End}_{A}(N)^{o p}\right)$-bimodule isomorphism.

Moreover, if $D N \otimes_{A} M \in R$-proj the map $\iota_{M, N}: D N \otimes_{A} M \rightarrow D \operatorname{Hom}_{A}(M, N)$, given by $\iota(f \otimes m)(g)=$ $f(g(m))$ for each $f \otimes m \in D N \otimes_{A} M, g \in \operatorname{Hom}_{A}(M, N)$, is an $\left(\operatorname{End}_{A}(N)^{o p}, \operatorname{End}_{A}(M)^{o p}\right)$-bimodule isomorphism.

Proof. It follows by Tensor-Hom adjunction and D being a duality functor.
Proposition 2.2. Let A be a Noetherian R-algebra. Assume $M, N \in A$ - $\bmod \cap R$-proj. Then, the map $\psi_{M, N}: \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A^{o p}}(D N, D M)$, given by, $\psi_{M, N}(g)(h)=h \circ g, g \in \operatorname{Hom}_{A}(M, N), h \in D N$, is an $\left(\operatorname{End}_{A}(M)^{o p}, \operatorname{End}_{A}(N)^{o p}\right)$-bimodule isomorphism, where D is the standard duality.
Proof. Consider the map $e_{M}: M \rightarrow D D M$, given by $e_{M}(m)(g)=g(m)$. This is a $\left(A, \operatorname{End}_{A}(M)^{o p}\right)-$ bimodule homomorphism. If M is a free R-module, then it is clear that e_{M} is an $\left(A, \operatorname{End}_{A}(M)^{o p}\right)$ bimodule isomorphism. Since $\left(e_{M}\right)_{M \in A-\text { mod }}$ is a natural transformation between the functors $\operatorname{Id}_{A \text {-mod }}$ and $D D$ we obtain that e_{M} is also an e_{M} is $\left(A, \operatorname{End}_{A}(M)^{o p}\right)$-bimodule isomorphism for every $M \in$ A-mod $\cap R$-proj.

Define the map $\delta: \operatorname{Hom}_{A}(D D M, D D N) \rightarrow \operatorname{Hom}_{A}(M, N)$, given by $\delta(h)=e_{N}^{-1} \circ h \circ e_{M}, h \in$ $\operatorname{Hom}_{A}(D D M, D D N)$. This map is bijective since e_{M} and e_{N}^{-1} are. By simple computations, we deduce that $e_{N} \circ \delta \circ \psi_{D N, D M} \circ \psi_{M, N}=e_{N} \circ \operatorname{id}_{\operatorname{Hom}_{A}(M, N)}$. Hence, $\delta \circ \psi_{D N, D M} \circ \psi_{M, N}=\operatorname{id}_{\operatorname{Hom}_{A}(M, N)}$. As
δ is bijective, $\psi_{D N, D M}$ is surjective. By a symmetric argument, we obtain $\delta^{\prime} \circ \psi_{D D N, D D M} \circ \psi_{D M, D N}=$ $\operatorname{id}_{\operatorname{Hom}_{A}(D M, D N)}$. Hence, $\psi_{D M, D N}$ is also an injective map. It follows that $\psi_{M, N}$ is a bijective map. We leave to the reader to see that $\psi_{M, N}$ is an $\left(\operatorname{End}_{A}(M)^{o p}, \operatorname{End}_{A}(N)^{o p}\right)$-bimodule homomorphism.

2.2 Change of ground rings

Changing the ground ring of a Noetherian algebra has many advantages. The most elementary advantage follows from the several versions of Nakayama's Lemma. For instance, a finitely generated R-module is zero if and only if $M(\mathfrak{m})$ is the zero module for all maximal ideals \mathfrak{m} of R. Also, a finitely generated R-module is projective if and only if $\operatorname{Tor}_{1}^{R}(M, R(\mathfrak{m}))=0$ for all maximal ideals \mathfrak{m} of R (see for example [Rot09, Lemma 8.53] together with the exactness of localization). Here, we collect further elementary facts to be used later.

Proposition 2.3. Let S be a commutative R-algebra and A a Noetherian R-algebra. Let $M \in \bmod -A$, $N \in A$-mod. Then, $S \otimes_{R}\left(M \otimes_{A} N\right) \simeq S \otimes_{R} M \otimes_{S \otimes_{R} A} S \otimes_{R} N$ as S-modules.

Proof. Consider the map $\psi: S \times\left(M \otimes_{A} N\right) \rightarrow S \otimes_{R} M \otimes_{S \otimes_{R} A} S \otimes_{R} N$, given by $\psi(s, m \otimes n)=\left(s \otimes m \otimes 1_{S} \otimes n\right)$, $s \in S, m \otimes n \in M \otimes_{A} N . \psi$ is linear in each term. Further, for every $r \in R$

$$
\psi(r s, m \otimes n)=r s \otimes m \otimes 1_{S} \otimes n=s \otimes r m \otimes 1_{S} \otimes n=\psi(s, r m \otimes n)
$$

So, ψ induces uniquely a map $\psi^{\prime} \in \operatorname{Hom}\left(S \otimes_{R} M \otimes_{A} N, S \otimes_{R} M \otimes_{S \otimes_{R} A} S \otimes_{R} N\right)$ which maps $s \otimes m \otimes n$ to $s \otimes m \otimes 1_{S} \otimes n$. Such a map is an S-homomorphism since

$$
\begin{aligned}
\psi(l s \otimes(m \otimes n)) & =l s \otimes m \otimes 1_{S} \otimes n=s l \otimes m \otimes 1_{S} \otimes n=s \otimes m \cdot\left(l \otimes 1_{A}\right) \otimes 1_{S} \otimes n \\
& =s \otimes m \otimes\left(l \otimes 1_{A}\right) \cdot 1_{S} \otimes n=s \otimes m \otimes l \otimes n=l \psi(s \otimes m \otimes n), s, l \in S, m \in M, n \in N
\end{aligned}
$$

Now, consider the map $\delta: S \otimes_{R} M \times S \otimes_{R} N \rightarrow S \otimes_{R} M \otimes_{A} N$, given by $\delta\left(s \otimes m, s^{\prime} \otimes n\right)=s s^{\prime} \otimes(m \otimes n)$, $m \in M, s, s^{\prime} \in S, n \in N$. It is clear that this map is bilinear. Let $l \otimes a \in S \otimes_{R} A$. Then,

$$
\begin{aligned}
\delta\left(s \otimes m \cdot l \otimes a, s^{\prime} \otimes n\right) & =\delta\left(s l \otimes m a, s^{\prime} \otimes n\right)=(s l) s^{\prime} \otimes(m a \otimes n)=s\left(l s^{\prime}\right) \otimes(m \otimes a n)=\delta\left(s \otimes m, l s^{\prime} \otimes a n\right) \\
& =\delta\left(s \otimes m,(l \otimes a) \cdot\left(s^{\prime} \otimes n\right)\right)
\end{aligned}
$$

So, δ induces uniquely a map $\delta^{\prime} \in \operatorname{Hom}_{S}\left(S \otimes_{R} M \otimes_{S \otimes_{R} A} S \otimes_{R} N, S \otimes_{R} M \otimes_{A} N\right)$. The S-homomorphisms δ^{\prime} and ψ^{\prime} are inverse to each other, and thus the result follows.

Proposition 2.4. Let S be a commutative R-algebra. Let A be a Noetherian R-algebra. Let $M \in A$-proj and $N \in A$-mod. Then, $S \otimes_{R} \operatorname{Hom}_{A}(M, N) \simeq \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} M, S \otimes_{R} N\right)$ as S-modules.

Proof. For each $M \in A$-mod, consider the S-homomorphism

$$
\psi_{M}: S \otimes_{R} \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} M, S \otimes_{R} N\right)
$$

given by $\psi_{M}(s \otimes f)\left(s^{\prime} \otimes m\right)=s s^{\prime} \otimes f(m), s, s^{\prime} \in S, m \in M, f \in \operatorname{Hom}_{A}(M, N)$. The homomorphism ψ_{M} is compatible with direct sums. This means that if M admits a decomposition $M=M_{1} \oplus M 2$, then there exists a commutative diagram

Let $M=A$. Then, there exists a commutative diagram

$$
\begin{aligned}
& S \otimes_{R} \operatorname{Hom}_{A}(A, N) \xrightarrow{\psi_{A}} \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} A, S \otimes_{R} N\right) \\
& \simeq \downarrow \psi_{1} \quad \simeq \downarrow \psi_{2} \\
& S \otimes_{R} N=S \otimes_{R} N
\end{aligned}
$$

In fact,

$$
\psi_{2} \circ \psi_{M}(s \otimes f)=\psi_{2}(s \otimes f)\left(1_{S} \otimes 1_{A}\right)=s 1_{S} \otimes f\left(1_{A}\right)=\psi_{1}(s \otimes f)
$$

Therefore, ψ_{A} is bijective. Since ψ_{M} is compatible with direct sums it follows that ψ_{M} is an S-isomorphism whenever $M \in A$-proj.

The following result is CPS90, Lemma 3.3.2].
Theorem 2.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let $M \in A$-mod. Then, M is projective over A if and only if $M \in R$-proj and $M(\mathfrak{m})$ is $A(\mathfrak{m})$-projective for every maximal ideal \mathfrak{m} in R.

2.3 Relative homological algebra

In this subsection, we assume only that A is a Noetherian R-algebra. Hochschild introduced in the 1950's (see Hoc56]) the concept of (A, R)-exact sequence. This concept did not get much attention at the time in representation theory of Noetherian algebras although it deserves more attention. Since this notion is not as commonly used in representation theory of Noetherian algebras as it might be we will recall with some detail the notions involved in this theory. An A-exact sequence $\cdots \rightarrow M_{i+1} \xrightarrow{t_{i+1}} M_{i} \xrightarrow{t_{i}}$ $M_{i-1} \rightarrow \cdots$ is called (A, R)-exact if for each i there exists a map $h_{i} \in \operatorname{Hom}_{R}\left(M_{i}, M_{i+1}\right)$ such that $h_{i-1} \circ t_{i}+t_{i+1} \circ h_{i}=\operatorname{id}_{M_{i}}$. It is a matter of bookkeeping to check that this last is equivalent to requiring that for each i, $\operatorname{ker} t_{i}=\operatorname{im} t_{i+1}$ is a summand of M_{i} as R-module. In this formulation, we can see that the (A, S)-short exact sequences are exactly the exact sequences of A-modules which are split as a sequence of S-modules. A homomorphism ϕ is called an (A, R)-monomorphism if $0 \rightarrow M \xrightarrow{\phi} N$ is (A, R)-exact. A homomorphism ϕ is called an (A, R)-epimorphism if $M \xrightarrow{\phi} N \rightarrow 0$ is (A, R)-exact.

An A-module Q is (A, R)-projective if every exact sequence of (A, R)-modules $0 \rightarrow M \rightarrow N \rightarrow$ $Q \rightarrow 0$ splits as a sequence of R-modules. Analogously, we define (A, R)-injective modules. Due to Hoc56, Lemma 1, Lemma 2], for each $M \in R$-Mod, $X \in \operatorname{add}\left(\operatorname{Hom}_{R}(A, M)\right), Y \in \operatorname{add}\left(A \otimes_{R} M\right)$, the functors $\operatorname{Hom}_{A}(Y,-)$ and $\operatorname{Hom}_{A}(-, X)$ are exact on (A, R)-exact sequences. These are exactly all the (A, R)-injective modules and (A, R)-projective modules, respectively, as we can see from the following elementary result.

Proposition 2.6. Let $M \in A$-mod. The following assertions are equivalent.
(a) M is (A, R)-injective, that is, every (A, R)-exact sequence $0 \rightarrow M \rightarrow V \rightarrow W \rightarrow 0$ is split over A;
(b) The natural homomorphism of A-modules $\varepsilon_{M}: M \xrightarrow{\simeq} \operatorname{Hom}_{A}(A, M) \rightarrow \operatorname{Hom}_{R}(A, M), \varepsilon(m)(a)=$ am, $\forall a \in A, m \in M$, splits over A;
(c) The functor $\operatorname{Hom}_{A}(-, M)$ is exact on (A, R)-exact sequences.

Proof. Assume (a). Notice that $\varepsilon^{\prime}: \operatorname{Hom}_{R}(A, M) \rightarrow M$, given by $\varepsilon^{\prime}(f)=f\left(1_{A}\right), f \in \operatorname{Hom}_{R}(A, M)$, is an R-homomorphism since $\varepsilon^{\prime}(r f)=r f\left(1_{A}\right)=f\left(1_{A} r\right)=r\left(f\left(1_{A}\right)\right)=r \varepsilon^{\prime}(f), \forall r \in R, f \in \operatorname{Hom}_{R}(A, M)$. Moreover, $\varepsilon^{\prime} \circ \varepsilon_{M}=\operatorname{id}_{M}$. So, the exact sequence $0 \rightarrow M \xrightarrow{\varepsilon_{M}} \operatorname{Hom}_{R}(A, M) \rightarrow \operatorname{coker} \varepsilon_{M} \rightarrow 0$ is (A, R) exact. By assumption, it splits over A. In particular, there exists $f \in \operatorname{Hom}_{A}\left(\operatorname{Hom}_{R}(A, M), M\right)$ satisfying $f \circ \varepsilon_{M}=\operatorname{id}_{M}$. So, (b) follows.

Assume now that (b) holds. By assumption, there exists $f \in \operatorname{Hom}_{A}\left(\operatorname{Hom}_{R}(A, M), M\right)$ such that $f \circ \varepsilon_{M}=\operatorname{id}_{M}$. Hence, $\varepsilon_{M} \circ f$ is an idempotent in $\operatorname{End}_{A}\left(\operatorname{Hom}_{R}(A, M)\right)$. So, M is an A-summand of $\operatorname{Hom}_{R}(A, M)$. Thus, $\operatorname{Hom}_{A}(-, M)$ is exact on (A, R)-exact sequences.

Finally, assume that (c) holds. Since every (A, R)-exact sequence $0 \rightarrow M \rightarrow V \rightarrow W \rightarrow 0$ remains exact under $\operatorname{Hom}_{A}(-, M)$ they are split over A.

Remark 2.7. It is immediate from Proposition 2.6 (b) that (A, R)-injective resolutions always exist. In fact, the following exact sequence

is an (A, R)-injective resolution of M, where $C_{i}:=\operatorname{coker} \varepsilon_{C_{i-1}}$ for $i \geq 1$ and $C_{0}:=\operatorname{coker} \varepsilon_{M}$. We call this resolution the standard (A, R)-injective resolution.

Analogously, we have the same statement for (A, R)-projective modules. For absolute projective A-modules, we can say more.
Proposition 2.8. Let M be a finitely generated projective left A-module. Denote $B=\operatorname{End}_{A}(M)^{o p}$. Then, the functor $F=\operatorname{Hom}_{A}(M,-)$ sends (A, R)-exact sequences to (B, R)-exact sequences.

Proof. Let $\cdots \rightarrow X_{i+1} \xrightarrow{t_{i+1}} X_{i} \xrightarrow{t_{i}} X_{i-1} \rightarrow \cdots$ be an (A, R)-exact sequence. In particular, $0 \rightarrow \operatorname{ker} t_{i} \xrightarrow{\nu_{i}}$ $X_{i} \xrightarrow{\sigma_{i}} \operatorname{ker} t_{i-1} \rightarrow 0$ is (A, R)-exact satisfying $t_{i}=\nu_{i-1} \circ \sigma_{i}$ for all i. Applying F yields the B-exact sequence $0 \rightarrow \operatorname{ker} F t_{i} \xrightarrow{F \nu_{i}} F X_{i} \xrightarrow{F \sigma_{i}} \operatorname{ker} F t_{i-1} \rightarrow 0$, satisfying $F t_{i}=F \nu_{i-1} \circ F \sigma_{i}$. So, it is enough to show that ker $F t_{i}$ is an R-summand of X_{i} with split monomorphism $F K_{i}$. So, it is enough to check that F sends (A, R)-monomorphisms to (B, R)-monomorphisms.

Let $0 \rightarrow Y \xrightarrow{\iota} X$ be an (A, R)-monomorphism. In particular, there exists a homomorphism $\pi \in$ $\operatorname{Hom}_{R}(X, Y)$ satisfying $\pi \circ \iota=\operatorname{id}_{Y}$. Since $M \in A$-proj, there exists $n \in \mathbb{N}$ such that $A^{n} \simeq M \oplus K$. Denote $\pi_{M}: A^{n} \rightarrow M$ and $i_{M}: M \rightarrow A^{n}$ the canonical projection and inclusion, respectively. For each $i=1, \ldots, n$, let $\pi_{i}: A^{n} \rightarrow A$ and $k_{i}: A \rightarrow A^{n}$ be the canonical projections and inclusions, respectively. Denote $\psi_{X}: \operatorname{Hom}_{A}\left(A^{n}, X\right) \rightarrow X^{n}$ and $\psi_{Y}^{-1}: Y^{n} \rightarrow \operatorname{Hom}_{A}\left(A^{n}, Y\right)$ the usual isomorphisms.

Consider $\psi:=\operatorname{Hom}_{A}\left(k_{M}, Y\right) \circ \psi_{Y}^{-1} \circ(\pi, \cdots, \pi) \circ \psi_{X} \circ \operatorname{Hom}_{A}\left(\pi_{M}, X\right) \in \operatorname{Hom}_{R}(F X, F Y)$. Let $g \in$ $\operatorname{Hom}_{A}(M, Y)$ and $m \in M$. Then,

$$
\begin{aligned}
\psi \circ \operatorname{Hom}_{A}(M, \iota)(g)(m) & =\psi(\iota \circ g)(m)=\operatorname{Hom}_{A}\left(k_{M}, Y\right) \circ \psi_{Y}^{-1} \circ(\pi, \cdots, \pi) \circ \psi_{X} \circ \operatorname{Hom}_{A}\left(\pi_{M}, X\right)(\iota \circ g)(m) \\
& =\psi_{Y}^{-1}\left((\pi, \cdots, \pi)\left(\psi_{X}\left(\iota \circ g \circ \pi_{M}\right)\right)\right)\left(k_{M}(m)\right) \\
& =\psi_{Y}^{-1}\left((\pi, \cdots, \pi)\left(\iota \circ g \circ \pi_{M} \circ k_{1}\left(1_{A}\right), \cdots, \iota \circ g \circ \pi_{M} \circ k_{n}\left(1_{A}\right)\right)\left(k_{M}(m)\right)\right. \\
& =\psi_{Y}^{-1}\left(g \circ \pi_{M} \circ k_{1}\left(1_{A}\right), \cdots, g \circ \pi_{M} \circ k_{n}\left(1_{A}\right)\right)\left(k_{M}(m)\right) \\
& =\sum_{i=1}^{n} \pi\left(k_{M}(m)\right) g \circ \pi_{M} \circ k_{i}\left(1_{A}\right)=\sum_{i=1}^{n} g \circ \pi_{M} \circ k_{i}\left(\pi\left(k_{M}(m)\right)\right) \\
& =g \circ \pi_{M} \circ k_{M}(m)=g(m) .
\end{aligned}
$$

Therefore, $\psi \circ \operatorname{Hom}_{A}(M, \iota)=\operatorname{id}_{F Y}$. This concludes the proof.
Consequently, (A, R)-exact sequences and all the categorical notions in module categories involving (A, R)-exact sequences are Morita invariant properties. It will become clearer later on that if a functor $\operatorname{Hom}_{A}(N,-)$, with $N \in A$-mod, is exact on a certain (A, R)-exact sequence it will not necessarily map such (A, R)-exact sequence to relative exact sequence over the endomorphism ring.

Proposition 2.9. Let V be a finitely generated projective right A-module. Denote $B=\operatorname{End}_{A}(V)$. Then, the functor $V \otimes_{A}-: A$-Mod $\rightarrow B$-Mod sends (A, R)-exact sequences to (B, R)-exact sequences.

Proof. Thanks to V being projective over A, the functors $V \otimes_{A}-\simeq \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(V, A), A\right) \otimes_{A}-\simeq$ $\operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(V, A),-\right)$ are equivalent. Since $\operatorname{Hom}_{A}(V, A) \in A$-proj, it follows by Proposition 2.8, that $V \otimes_{A}$ - sends (A, R)-exact sequences to (B, R)-exact sequences.

Thanks to the existence of the maps $h_{i} \in \operatorname{Hom}_{R}\left(M_{i}, M_{i+1}\right)$ satisfying $h_{i-1} \circ t_{i}+t_{i+1} \circ h_{i}=\mathrm{id}_{M_{i}}$ for a given (A, R)-exact sequence t, the standard duality $D=\operatorname{Hom}_{R}(-, R)$ maps (A, R)-exact sequences to ($A^{o p}, R$)-exact sequences.

2.3.1 Forgetful functors

We say that we have a relative homological algebra if we choose an abelian category together with a class of exact sequences. A relative abelian category in the sense of Mac Lane Mac95 consists of the following data: a pair of abelian categories $(\mathcal{A}, \mathcal{B})$ together with a covariant additive, exact and faithful functor $F: \mathcal{A} \rightarrow \mathcal{B}$.

Consider the forgetful functor $F: A$-Mod $\rightarrow R$-Mod. Since it is a forgetful functor, it is faithful. This functor preserves biproducts, hence it is additive. Consider the functors $G, H: R$-Mod $\rightarrow A$-Mod, given by $G M=\operatorname{Hom}_{R}(A, M), H M=A \otimes_{R} M$, and $G f=\operatorname{Hom}_{R}(A, f), H f=A \otimes_{R} f$. It follows by tensor-hom adjunction that the functor G is a right adjoint of F and H is a left adjoint of F. The existence of left and right adjoint functors imply that F preserves all finite limits and all finite colimits. In particular, it preserves kernels and cokernels. Hence F is exact. In view of [Mac95, Chapter 9, 4], a short exact sequence of A-modules $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is said to be F-allowable if the exact sequence $0 \rightarrow F X \rightarrow F Y \rightarrow F Z \rightarrow 0$ splits over R. These are exactly the (A, R)-exact sequences. We saw that the objects for which $\operatorname{Hom}_{A}(P,-)$ is exact on (A, R)-exact sequences are exactly the modules $P=A \otimes_{R} X$, $X \in R$-Mod. Conversely, using tensor-hom adjunction, we can see that the class of exact sequences which remains exact under $\operatorname{Hom}_{A}\left(A \otimes_{R} X,-\right)$ are exactly the (A, R)-exact sequences.

Nowadays, the most common approach to relative homological algebra is to first consider a class of objects \mathcal{P} of an abelian category \mathcal{A}. Then, we can compute the class of exact sequences for which the class of objects \mathcal{P} remain exact under $\operatorname{Hom}_{\mathcal{A}}(P,-)$ for every $P \in \mathcal{P}$. The class of (A, R)-exact sequences is closed in the sense of [EM65]. That is, these two approaches are equivalent for (A, R)-exact sequences. The literature of relative homological algebra, extending the classical homological algebra theory, is well developed in this point of view for Artinian algebras A. Hence the interested reader can obtain further properties on (A, R)-exact sequences like relative Ext and Tor functors by using the same arguments as the ones presented in EJ11.

2.3.2 More details on relative injective modules

We will now shift our attention to modules that belong in A-mod $\cap R$-proj once again assuming that A is a projective Noetherian R-algebra unless stated otherwise. Because of A being projective over R, the absolute projectives of A-mod are exactly the relative projectives of A - $\bmod \cap R$-proj. So, our interest will now be in the relative injective modules. Denote by (A, R)-inj the full subcategory of A-mod whose modules are (A, R)-injective.

Proposition 2.10. Let $I \in A$-mod $\cap R$-proj. I is (A, R)-injective if and only if $\operatorname{Ext}_{A}^{1}(M, I)=0$ for all $M \in A$-mod $\cap R$-proj. Moreover, if I is (A, R)-injective, then $\operatorname{Ext}_{A}^{i>0}(M, I)=0$ for all $M \in$ A-mod $\cap R$-proj.

Proof. Suppose that I is (A, R)-injective. Any A-exact sequence $0 \rightarrow I \rightarrow X \rightarrow M \rightarrow 0$, with $M \in R$-proj, is (A, R)-exact and so it is split over A. Consider an A-projective resolution for $M \in$ A-mod $\cap R$-proj, $\cdots \rightarrow P_{2} \xrightarrow{\alpha_{2}} P_{1} \xrightarrow{\alpha_{1}} P_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0$. In particular, there are (A, R)-exact sequences
$0 \rightarrow \operatorname{im} \alpha_{j} \rightarrow P_{j-1} \rightarrow \operatorname{im} \alpha_{j-1} \rightarrow 0$, thanks to the fact that $M \in R$-proj and consequently for every $j \geq 0$, $\operatorname{im} \alpha_{j} \in R$-proj. So, $\operatorname{Ext}_{A}^{i}(M, I) \simeq \operatorname{Ext}_{A}^{1}\left(\operatorname{im} \alpha_{i-1}, I\right)=0$ for every $i>0$.

Conversely, assume that $\operatorname{Ext}_{A}^{1}(M, I)=0$ for all $M \in A-\bmod \cap R$-proj. Let $I \rightarrow \operatorname{Hom}_{R}(A, I)$ be the standard (A, R)-injective copresentation of I with cokernel X. Since A is projective over $R, \operatorname{Hom}_{R}(A, I)$ is R-projective making X an R-projective module. By assumption, the injective copresentation must split over A and therefore I is (A, R)-injective.

In Rou08, the modules $I \in A$-mod $\cap R$-proj satisfying the property $\operatorname{Ext}_{A}^{1}(M, I)=0$ for all $M \in$ A-mod $\cap R$-proj are called relatively R-injective. Therefore, the relatively R-injective modules are exactly the (A, R)-injective modules which are R-projective. Furthermore, this characterization says that the (A, R)-injective modules which are R-projective are exactly the objects X of $\mathcal{A}=A$-mod $\cap R$-proj which make $\operatorname{Hom}_{\mathcal{A}}(-, X)$ exact on \mathcal{A}.
Lemma 2.11. Let $M \in A$-mod $\cap R$-proj. M is (A, R)-injective if and only if $D M$ is $A^{o p}$-projective.
Proof. Let P be a projective (right) A-module. Then, $D P$ is an A-summand of $\operatorname{Hom}_{R}\left(A^{t}, R\right) \simeq$ $\operatorname{Hom}_{R}(A, R)^{t}$. Hence, $D P$ is an (A, R)-injective left module.

Let M be an (A, R)-injective and projective R-module. Then, M is an A-summand of $\operatorname{Hom}_{R}(A, M)$. Note that

$$
\begin{align*}
D \operatorname{Hom}_{R}(A, M) & \simeq \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(A, M), R\right) \simeq \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(A, R) \otimes_{R} M, R\right) \tag{1}\\
& \simeq \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(A, R), R\right)\right) \simeq \operatorname{Hom}_{R}(M, A) \simeq \operatorname{Hom}_{R}(M, R) \otimes_{R} A \tag{2}\\
& =A \otimes_{R} D M \tag{3}
\end{align*}
$$

As $D M \in R$-proj, $D \operatorname{Hom}_{R}(A, M) \in A^{o p}$-proj and consequently $D M \in A^{o p}$-proj.
Using this Lemma, we can formulate the dual version of Theorem 2.5.
Corollary 2.12. Let A be a projective Noetherian R-algebra. Let $P \in A$ - $\bmod \cap R$-proj. Then, P is (A, R)-injective if and only if $P(\mathfrak{m})$ is an injective $A(\mathfrak{m})$-module for every maximal ideal \mathfrak{m} in R.
Proof. Assume that P is (A, R)-injective. Then, $D P$ is $\left(A^{o p}, R\right)$-projective. Since $P \in R$-proj, $D P \in$ $A^{o p}$-proj. Let \mathfrak{m} be a maximal ideal in R. Then, $D P(\mathfrak{m})=\operatorname{Hom}_{R}(P, R)(\mathfrak{m}) \simeq \operatorname{Hom}_{R(\mathfrak{m})}(P(\mathfrak{m}), R(\mathfrak{m}))$ is a projective right $A(\mathfrak{m})$-module. Thus, $P(\mathfrak{m}) \simeq \operatorname{Hom}_{R(\mathfrak{m})}\left(\operatorname{Hom}_{R(\mathfrak{m})}(P(\mathfrak{m}), R(\mathfrak{m})), R(\mathfrak{m})\right)$ is an injective left $A(\mathfrak{m})$-module.

Conversely, assume that $P(\mathfrak{m})$ is an injective left $A(\mathfrak{m})$-module for every maximal ideal \mathfrak{m} in R. Then, for every maximal ideal \mathfrak{m} of $R, \operatorname{Hom}_{R(\mathfrak{m})}(P(\mathfrak{m}), R(\mathfrak{m})) \simeq \operatorname{Hom}_{R}(P, R)(\mathfrak{m})$ is a projective right $A(\mathfrak{m})$ module. Thus, $D P=\operatorname{Hom}_{R}(P, R)$ is an projective right A-module since $D P \in R$-proj. Hence, $P \simeq D D P$ is (A, R)-injective.

Remark 2.13. In this sense, relative injective modules can be viewed as a natural generalization of injective modules of finite dimensional algebras.

Further evidence that (A, R)-monomorphisms behave like the inclusions between modules over finite dimensional algebras is the following version of Nakayama's Lemma for (A, R)-monomorphisms.
Lemma 2.14. If $\phi: M \rightarrow N$ is (A, R)-monomorphism and $M \simeq N$ as finitely generated R-modules, then ϕ is an isomorphism.
Proof. Since ϕ is (A, R)-mono, there exists $\varepsilon: N \rightarrow M$ such that $\varepsilon \circ \phi=\operatorname{id}_{M}$. Thus, ε is surjective. By Nakayama's Lemma, ε is an R-isomorphism. Therefore, $\phi=\varepsilon^{-1} \circ \varepsilon \circ \phi=\varepsilon^{-1}$ is bijective.

For Artinian rings, a module is a cogenerator if and only if contains all injective indecomposable modules. However, we are only interested in the relative injective modules which are projective over the ground ring. Thus, for our purposes, we can relax the notion of cogenerator. By an (A, R)-cogenerator we mean an A-module Q whose additive closure contains the module $D A_{A}$.

The following Lemma also holds for Noetherian R-algebras.

Lemma 2.15. Let A be a projective Noetherian R-algebra. Let $M, N \in A^{o p}$ - $\bmod \cap R$-proj. Then, $\operatorname{Ext}_{A^{\circ p}}^{i}(M, N) \simeq \operatorname{Ext}_{A}^{i}(D N, D M)$ for any $i \geq 0$.

Proof. Let M^{\bullet} be a left $A^{o p}$-projective resolution $\cdots \rightarrow M_{1} \xrightarrow{\alpha_{1}} M_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0$. Since $M \in R$-proj, all $\operatorname{im} \alpha_{i} \in R$-proj. Hence, M^{\bullet} is an $\left(A^{o p}, R\right)$-projective resolution. Moreover, applying D to M^{\bullet} yields the exact sequence $0 \rightarrow D M \xrightarrow{D \alpha_{0}} D M_{0} \rightarrow D M_{1} \rightarrow \cdots$, since $\operatorname{Ext}_{R}^{i}(M, R)=0$ for all $i>0$. Each $D M_{i}$ is (A, R)-injective. Thus, $D M^{\bullet}$ is an (A, R)-injective resolution of $D M$. The following diagram is commutative

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{A^{o p}}\left(M_{0}, N\right) \xrightarrow{\left.\operatorname{Hom}_{A^{o p}\left(\alpha_{1}\right.}, N\right)} \operatorname{Hom}_{A^{o p}}\left(M_{1}, N\right) \longrightarrow \cdots \\
\downarrow \psi_{M_{0}, N} \operatorname{Hom}_{A}\left(D N, D \alpha_{1}\right) \quad \downarrow \psi_{M_{1}, N} \\
0 \longrightarrow \operatorname{Hom}_{A}\left(D N, D M_{0}\right) \xrightarrow{\longrightarrow}\left(D N, D M_{1}\right) \longrightarrow \cdots
\end{gathered} .
$$

Hence,

$$
\begin{equation*}
\operatorname{Ext}_{A^{o p}}^{i}(M, N)=H^{i}\left(\operatorname{Hom}_{A^{o p}}\left(M^{\bullet}, N\right)\right)=H^{i}\left(\operatorname{Hom}_{A}\left(D N, D M^{\bullet}\right)\right)=\operatorname{Ext}_{(A, R)}^{i}(D N, D M) \tag{4}
\end{equation*}
$$

Here, $\operatorname{Ext}_{(A, R)}$ denotes the relative Ext functor. Due to every A-projective resolution for $D N \in R$-proj being (A, R)-exact, it follows that $\operatorname{Ext}_{(A, R)}^{i}(D N, D M)=\operatorname{Ext}_{A}^{i}(D N, D M)$ for every $i \geq 0$.

3 Relative QF3 R-algebras

Now, we are ready to introduce the concept of relative dominant dimension of projective Noetherian algebras (Definition 3.1) and to explain what it means for a module over a Noetherian algebra to have positive relative dominant dimension (Proposition 3.4). This endeavour leads us to study modules which are simultaneously projective relative injective and strongly faithful. The latter concept, to be defined in 3.5, will become very natural to consider once we know the definition of relative dominant dimension. Further, we show here that for relative self-injective algebras, strongly faithful modules are exactly the generator objects in the module category (Theorem 3.12. We will extend some known results of Tachikawa Tac73] for QF3 algebras to this integral setup and we end this section by developing the analogue of Mueller's characterization for smaller levels of relative dominant dimension, that is, for values of relative dominant dimension one or two (Lemma 3.21 and Proposition 3.23). This can be viewed as the preparations for the relative Morita-Tachikawa correspondence.

3.1 Definition of relative dominant dimension

Definition 3.1. Let $M \in A$-mod. We say that M has relative dominant dimension at least $t \in \mathbb{N}$ if there exists an (A, R)-exact sequence of finitely generated left A-modules

$$
\begin{equation*}
0 \rightarrow M \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{t} \tag{5}
\end{equation*}
$$

with I_{i} both A-projective and (A, R)-injective. If M admits no such (A, R)-exact sequence, then we say that M has relative dominant dimension zero. Otherwise, the relative dominant dimension of M is the supremum of the set of all values t such that an (A, R)-exact sequence of the form 5 exists. We denote by domdim $\operatorname{di,R)} M$ the relative dominant dimension of M.

Analogously, we can define relative dominant dimension for right A-modules.
Note that if R is a field, A is a finite-dimensional algebra and $\operatorname{domdim}_{(A, R)} M$ is exactly the dominant dimension over A of M.

Proposition 3.2. (A, R)-dominant dimension is invariant under Morita equivalence.

Proof. Let B be an algebra which is Morita equivalent to A. Thus, B is a projective Noetherian R algebra. Since (A, R)-exact sequences and (A, R)-injective modules are preserved under equivalence of module categories it follows that (A, R)-dominant dimension is invariant under Morita equivalence.

Observe that since the zero module is projective and relative injective, if a module admits a finite projective (A, R)-injective coresolution, then it has infinite relative dominant dimension. We can make more precise the case of infinite relative dominant dimension for a module in A-mod $\cap R$-proj with finite relative injective dimension. In view of Proposition 2.10 , the relative injective dimension of $M \in A-\bmod \cap R$-proj is the minimum number n (if it exists) such that $\operatorname{Ext}_{A}^{n+1}(N, M)=0$ for every $N \in A$-mod $\cap R$-proj. The relative injective dimension of $M \in A$ - $\bmod \cap R$-proj is infinite if no such a number n exists. Hence, the dual of the usual characterizations of projective dimension can be used for relative injective modules. We will denote by $\operatorname{injdim}_{(A, R)} M$ the relative injective dimension of $M \in A-\bmod \cap R$-proj.

Proposition 3.3. Let $M \in A-\bmod \cap R$-proj having $\operatorname{injdim}_{(A, R)} M<\infty$. The following assertions are equivalent.
(a) $\operatorname{domdim}_{(A, R)} M=+\infty$;
(b) M is A-projective and (A, R)-injective.

Proof. Assume that (b) holds. Consider the (A, R)-exact sequence $0 \rightarrow M \rightarrow M \rightarrow 0$. By Definition 3.1, (a) holds.

Assume that (a) holds. In particular, $\operatorname{domdim}_{(A, R)} M \geq t=\operatorname{injdim}_{(A, R)} M$ so there exists an (A, R) exact sequence $0 \rightarrow M \xrightarrow{\alpha_{0}} I_{0} \xrightarrow{\alpha_{1}} \cdots \xrightarrow{\alpha_{t}} I_{t}$ with I_{i} both A-projective and (A, R)-injective (possibly with some of them being zero). Thanks to Proposition 2.10 together with $\operatorname{Ext}_{A}^{t+1}(L, M) \simeq \operatorname{Ext}_{(A, R)}^{1}\left(L, \operatorname{im} \alpha_{t}\right)=$ 0 for every $L \in A$-mod $\cap R$-proj, we obtain that α_{t} is (A, R)-injective. So, it is an A-summand of I_{t}. Thus, it is also A-projective. Further, the exact sequence $0 \rightarrow M \rightarrow I_{0} \rightarrow \cdots \rightarrow \operatorname{im} \alpha_{t} \rightarrow 0$ splits over A. Hence, $M \in \operatorname{add} I_{0}$.

The result can be generalized for modules in A-mod if one defines relative injective dimension in terms of relative Ext functors which is a theme that we will not pursue here.

3.2 Modules with relative dominant dimension at least one

The following result characterizes the modules with relative dominant dimension at least one.
Proposition 3.4. Let $M \in A$-mod. Then, $\operatorname{domdim}_{(A, R)} M>0$ if and only if M is an (A, R)-submodule of a (left) module that is both A-projective and (A, R)-injective. In particular, $\operatorname{domdim}(A, R)_{A} A>0$ if and only if A is an (A, R)-submodule of an A-projective (A, R)-injective (left) module.

Proof. Assume that M is not an (A, R)-submodule of a (left) module that is both A-projective and (A, R)-injective. Assume by contradiction that $\operatorname{domdim}_{(A, R)} M>0$. Then, there exists by definition an (A, R)-monomorphism $M \rightarrow I_{1}$ with $I_{1} \in A$-proj $\cap(A, R)$-inj. This contradicts our assumption. Then, domdim $\operatorname{di,R} M=0$. Conversely, assume that $\operatorname{domdim}_{(A, R)} M=0$. By contradiction assume that M is an (A, R)-submodule of a (left) module that is both A-projective and (A, R)-injective, say N. Then, the monomorphism $M \rightarrow N$ is (A, R)-exact and by the definition we get $\operatorname{domim}_{(A, R)} M>0$.

As a consequence, we see that every module with positive relative dominant dimension is projective over the ground ring. Moreover, if A is an order, modules with positive relative dominant dimension are exactly the R-pure A-submodules of a projective relative injective module. (see Rei03). In the classical theory of dominant dimension the analogue of Proposition 3.4 motivates us to study faithful projectiveinjective modules. Indeed, faithful finitely generated modules M can be characterized by the existence of an A-monomorphism of the regular module A into a finite direct sum of copies of M. The natural choice
is to consider a generator set of M, say $\left\{m_{1}, \ldots, m_{t}\right\}$, together with the A-homomorphism $A \rightarrow M^{t}$, given by $a \mapsto\left(a m_{1}, \ldots, a m_{t}\right)$. For faithful A-modules, this homomorphism is always injective. For Artinian algebras, such characterization is also valid for non-finitely generated modules since descending chains of intersection of kernels of homomorphisms are finite. The reason of interest in such a characterization of faithfulness comes from the fact this turns finitely generated faithful modules and faithful modules over Artinian algebras into a categorical concept. However, the bigger problem comes from the fact that even if M is a faithful finitely generated module, a homomorphism of A into a direct sum of copies of M is not necessarily split over R, whenever A is a Noetherian algebra. The reader may think for example of an order contained in an over-order.

For now, another thing to keep in mind that is different from the Artinian case is A-mod not being a Krull-Schmidt category, in general.

3.3 Strongly faithful modules

As discussed, in relative dominant dimension theory, faithful modules without further properties no longer play a key role in the study of relative dominant dimension of Noetherian algebras. Here they are replaced by the following concept.

Definition 3.5. We say that a (left) module M is (A, R)-strongly faithful if there is an (A, R) monomorphism ${ }_{A} A \hookrightarrow M^{t}$ for some $t>0$. The definition for right modules is analogous.

If R is a field, then A becomes a finite dimensional algebra. Thus, if R is a field, then (A, R)-strongly faithful coincides with faithful.

Any generator of A-mod is (A, R)-strongly faithful. Because of M being a generator of A-mod there exists $t>0$ such that $M^{t} \simeq A \oplus K$ as A-modules. In particular, the canonical monomorphism $A \hookrightarrow M^{t}$ splits over A, and thus is an (A, R)-monomorphism.

In terms of relative dominant dimension, Proposition 3.4 says that an algebra has relative dominant dimension greater or equal than one if and only if it has an (A, R)-strongly faithful, A-projective (A, R)-injective module. By an (A, R)-injective-strongly faithful module we mean a module that is simultaneously (A, R)-injective and (A, R)-strongly faithful.

Any (A, R)-strongly faithful contains as summand a minimal (A, R)-strongly faithful module in the following sense.

Proposition 3.6. Let M be a finitely generated A-projective and (A, R)-injective-strongly faithful module. Then, there exists an (A, R)-strongly faithful module $N \in \operatorname{add}_{A} M$ which does not contain any proper (A, R)-strongly faithful module as A-summand.

Proof. If M does not contain a proper (A, R)-strongly faithful module as A-summand, then we are done. Otherwise, we can write $M \simeq N_{0} \bigoplus K_{0}$ where N_{0} is an (A, R)-strongly faithful module. Then, we can apply the same reasoning to N_{0}. After a finite number of steps, we can construct a proper chain

$$
\begin{equation*}
0 \subsetneq K_{0} \subsetneq K_{1} \bigoplus K_{0} \subsetneq \cdots \subsetneq K_{n} \bigoplus \cdots \bigoplus K_{0} \tag{6}
\end{equation*}
$$

Since M is a Noetherian module, this chain must stabilize. Hence this construction must stop after a finite number of steps, say t. The module N_{t-1} belongs to add M and does not contain any proper (A, R)-strongly faithful module as A-summand.

Lemma 3.7. Let M be a finitely generated A-projective and (A, R)-injective-strongly faithful module. Then, every A-projective (A, R)-injective module belongs to add M. In particular, all endomorphism rings of modules N being finitely generated A-projective and (A, R)-injective-strongly faithful are Morita equivalent.

Proof. Let N be a projective and (A, R)-injective A-module. Since $N \in A$-proj then there is an $n \in \mathbb{Z}_{0}^{+}$ and $L \in A-\bmod$ such that $A^{n} \simeq N \bigoplus L$. Denote by k_{N} and π_{N} the canonical injection and projection, respectively. Since M is (A, R)-strongly faithful, there exists $i \in \operatorname{Hom}_{A}\left(A, M^{t}\right)$ and $\pi \in \operatorname{Hom}_{R}\left(M^{t}, A\right)$ such that $\pi \circ i=\operatorname{id}_{A}$. Define $f=(i, \cdots, i) \circ k_{N} \in \operatorname{Hom}_{A}\left(N, M^{t n}\right)$. Then,

$$
\begin{equation*}
\pi_{N} \circ(\pi, \cdots, \pi) \circ f=\pi_{N} \circ(\pi, \cdots, \pi) \circ(i, \cdots, i) \circ k_{N}=\pi_{N} \circ \operatorname{id}_{A^{n}} \circ k_{N}=\operatorname{id}_{N} \tag{7}
\end{equation*}
$$

Thus, f is an (A, R)-monomorphism. Since N is (A, R)-injective f splits over A. In particular, $N \in$ $\operatorname{add}_{A} M$.

If N is also (A, R)-strongly faithful, then by reversing the roles of M and N, we obtain $M \in \operatorname{add} N$. Thus, add $N=\operatorname{add} M$. This concludes the proof.

For projective Noetherian algebras, it is easier to check the double centralizer property in the presence of (A, R)-strongly faithful modules. Using Nakayama's Lemma for (A, R)-monomorphisms 2.14 , we can extend Lemma 2.1 of KY14 to Noetherian algebras.

Proposition 3.8. Let M be an (A, R)-strongly faithful and $B=\operatorname{End}_{A}(M)^{o p}$. Then, the following assertions are equivalent.
(i) (A, M) satisfies the double centralizer property, that is, the canonical map $A \rightarrow \operatorname{End}_{B}(M)$ is an R-isomorphism of algebras.
(ii) $A \simeq \operatorname{End}_{B}(M)$ as R-modules.
(iii) $A \simeq \operatorname{End}_{B}(M)$ as R-algebras.

Proof. $i) \Rightarrow i i i) \Rightarrow i i$) is clear. We shall prove $i i) \Rightarrow i$). Denote by ρ the canonical map of R-algebras $A \rightarrow \operatorname{End}_{B}(M)$. Since M is (A, R)-strongly faithful, there are maps $i \in \operatorname{Hom}_{A}\left(A, M^{t}\right), \varepsilon \in \operatorname{Hom}_{R}\left(M^{t}, A\right)$, for some t, satisfying $\varepsilon \circ i=\operatorname{id}_{A}$. Let π_{j} and k_{j} be the canonical projections and injections of the direct $\operatorname{sum} M^{t}, j=1, \ldots, t$, respectively. Consider $\psi: \operatorname{End}_{B}(M) \rightarrow A$, given by $\psi(f)=\sum_{j} \varepsilon \circ k_{j} \circ f\left(\pi_{j} \circ i\left(1_{A}\right)\right)$ for each $f \in \operatorname{End}_{B}(M)$. This is an R-map and

$$
\begin{aligned}
\psi \circ \rho(a) & =\sum_{j} \varepsilon \circ k_{j} \circ \rho(a)\left(\pi_{j} \circ i\left(1_{A}\right)\right)=\sum_{j} \varepsilon \circ k_{j}\left(a \pi_{j} \circ i\left(1_{A}\right)\right) \\
& =\sum_{j} \varepsilon \circ k_{j}\left(\pi_{j}(i(a))\right)=\varepsilon \circ \sum_{j} k_{k} \circ \pi_{j} i(a)=\varepsilon \circ i(a)=a
\end{aligned}
$$

Hence, ρ is (A, R)-monomorphism. By Lemma 2.14 since $A \simeq \operatorname{End}_{B}(M)$ as finitely generated R-modules, it follows that ρ is an isomorphism. By definition, (A, M) satisfies the double centralizer property.

3.3.1 Relative self-injective algebras

(A, R)-strongly faithful modules play an important role for relative self-injective algebras in the same fashion that faithful modules play an important role for self-injective Artinian algebras.

Definition 3.9. An R-algebra B is called relative (left) self-injective if ${ }_{B} B$ is (B, R)-injective.
For projective Noetherian R-algebras the notions of relative left and relative right self-injective R algebra are equivalent.

Proposition 3.10. Let B be a projective Noetherian R-algebra. Then, B is a relative left self-injective R-algebra if and only if B is a relative right self-injective R-algebra.

Proof. Assume that B is a relative right self-injective R-algebra. Then, B is (B, R)-injective as a right module. By Corollary $2.12, B(\mathfrak{m})$ is an injective right $B(\mathfrak{m})$-module for every maximal ideal \mathfrak{m} in R. In particular, every right module being projective over $B(\mathfrak{m})$ is injective over $B(\mathfrak{m})$. It is well known that this implies that every finitely generated $B(\mathfrak{m})$-injective module is $B(\mathfrak{m})$-projective ([ARS95, IV. 3]). In particular, $\operatorname{Hom}_{R(\mathfrak{m})}(B(\mathfrak{m}), R(\mathfrak{m}))$ is $B(\mathfrak{m})$-projective as a right module. So, $B(\mathfrak{m})$ is $B(\mathfrak{m})$-injective as a left module for every maximal ideal \mathfrak{m} in R. Again, by Theorem $2.12, B$ is left (B, R)-injective. Thus, B is a relative left self-injective R-algebra.

Projective Noetherian R-algebras which are relative self-injective were considered several times during the 1960s. For example, the structure of these algebras that have global dimension at most one was determined in End67.

Before we show their relation with strongly faithful modules, we shall see that these algebras are quite common. In fact, a class of examples of relative self-injective algebras are the group algebras over a commutative ring. This fact is folklore and its proof is essentially the same as for finite dimensional algebras (see CR06, (62.1)]).

Proposition 3.11. For every finite group G, the group algebra $R G$ is a relative self-injective R-algebra for any commutative ring R.

Proof. Consider the R-linear map $\pi: R G \rightarrow R$, given by $\pi(g)=\mathbb{1}_{\{e\}}(g) 1_{R}, g \in G$, where e denotes the identity element of G. Define the $R G$-map $\phi: R G \rightarrow D R G$, given by $\phi(g)(h)=\pi(g h)$ for every $h \in R G$. Note that

$$
\begin{equation*}
\phi(h g)(x)=\pi((h g) x)=\pi(h(g x))=\phi(h)(g x)=\phi(h) g(x), \forall g, h, x \in G . \tag{8}
\end{equation*}
$$

Thus, ϕ is an $R G$-right homomorphism. We claim that ϕ is injective. In fact, let $x=\sum_{g \in G} x_{g} g \in \operatorname{ker} \phi$. Then, for all $h \in G$,

$$
\begin{equation*}
0=\phi(x)(h)=\pi(x h)=\pi\left(\sum_{g \in G} x_{g} g h\right)=\sum_{g \in G} x_{g} \mathbb{1}_{\{e\}}(g h)=x_{h^{-1}} . \tag{9}
\end{equation*}
$$

We shall now prove that ϕ is surjective. Observe that elements $g^{*} \in D R G$, given by $g(h)=\mathbb{1}_{\{g\}}(h) 1_{R}$, $h \in G$, form an R-basis of $D R G$. Moreover, $g^{*}\left(\sum_{g \in G} h_{g} g\right)=h_{g}$. We claim that $\phi\left(g^{-1}\right)=g^{*}$ for every $g \in G$. In fact,

$$
\begin{equation*}
\phi\left(g^{-1}\right)(x)=\pi\left(g^{-1} \sum_{h \in G} x_{h} h\right)=\sum_{h \in G} x_{h} \mathbb{1}_{\{e\}\}}\left(g^{-1} h\right)=\sum_{h \in G} x_{h} \mathbb{1}_{\{g\}}(h)=x_{g}=g^{*}(x), \quad \forall x \in R G . \tag{10}
\end{equation*}
$$

Therefore, $R G \simeq D(R G)$ as right $R G$-modules. Consequently $R G \simeq D D R G \simeq D(R G)$ as left $R G$ modules, since $R G \in R$-proj. Hence $R G$ is ($R G, R$)-injective.

Here, $\mathbb{1}_{A}$ denotes the indicator function of a set A.
Theorem 3.12. Let B be a relative (left and right) self-injective R-algebra. Let M be $a(B, R)$-strongly faithful module. Then, M is a generator (B, R)-cogenerator and it satisfies a double centralizer property: $A=\operatorname{End}_{B}(M)^{o p}$ and $B=\operatorname{End}_{A}(M)$.

Proof. Since M is (B, R)-strongly faithful, there exists a (B, R)-monomorphism $0 \rightarrow B \rightarrow M^{t}$. As B is (B, R)-injective, this monomorphism splits over B. Hence $B \in \operatorname{add} M$. In particular, M is a generator of B-mod. Since double centralizer properties hold on generators, it follows that $B \simeq \operatorname{End}_{A}(M)$ with $A=\operatorname{End}_{B}(M)$. Since B is right self-injective algebra then B_{B} belongs to add $D_{B} B$. Consequently, $D B_{B}$ belongs to $\operatorname{add}_{B} B \subset \operatorname{add} M$. So, M is a B-generator (B, R)-cogenerator.

Note that every relative self-injective R-algebra has infinite relative dominant dimension. Indeed, we can consider the (A, R)-exact sequence $0 \rightarrow A \rightarrow A \rightarrow 0$. In parallel, we conjecture the following relative version of Nakayama conjecture:

Conjecture 3.13. Given a projective Noetherian R-algebra, $\operatorname{domdim}(A, R)=+\infty$ if and only if A is a relative (left and right) self-injective R-algebra.

As we will see afterwards in Theorem 6.17, this conjecture is equivalent to the Nakayama conjecture. Theorem 3.12 motivates us to study endomorphism rings of generators-relative cogenerators. For finite dimensional algebras over a field, they can be characterized using dominant dimension. In order to obtain a relative version of this fact for Noetherian algebras, we need first to introduce another definition of relative dominant dimension.

3.4 Dominant dimension with respect to a projective relative injective module

We will now introduce an alternative definition of relative dominant dimension. This will be extremely useful for the arguments in the proof of relative Morita-Tachikawa correspondence.

Definition 3.14. Let P be an A-projective (A, R)-injective module. Let $X \in A$ - $\bmod \cap R$-proj. If X is not an (A, R)-submodule of some module in the additive closure of P, then we say that the relative dominant dimension of X with respect to P is zero. Otherwise, the relative dominant dimension of X with respect to P, denoted by $P-\operatorname{domdim}_{(A, R)} X$, is the supremum of all $n \in \mathbb{N}$ such that there exists an (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow X \rightarrow P_{1} \rightarrow \cdots \rightarrow P_{n} \tag{11}
\end{equation*}
$$

with all $P_{i} \in \operatorname{add}_{A} P$.
By convention, the empty direct sum is the zero module. So, the existence of a finite relative add P coresolutions implies that $P-\operatorname{domdim}_{(A, R)} X$ is infinite. In the same way, we can define the relative dominant dimension of a right module with respect a right projective relative injective module Q.

Definition 3.14 generalizes the concept of relative dominant dimension introduced in 3.1 as we can see in the following Proposition. Furthermore, this is a generalization of [Tac73, 7.3, 7.7].

Proposition 3.15. Assume that A is a projective Noetherian R-algebra with A-projective (A, R)-injectivestrongly faithful left A-module P. Then,

$$
\begin{equation*}
P-\operatorname{domdim}_{(A, R)} X=\operatorname{domdim}_{(A, R)} X, \quad X \in A-\bmod \tag{12}
\end{equation*}
$$

Proof. Assume that there exists an (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow X \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n} \tag{13}
\end{equation*}
$$

with X_{i} an A-projective (A, R)-injective left module for all $i \geq 1$. Since all X_{i} are projective there exists k_{i} such that $A^{k_{i}} \simeq X_{i} \oplus K_{i}$. Choose $k=\max \left\{k_{1}, \ldots, k_{n}\right\}$. So, each X_{i} can be embedded in A^{k} as A-summand. Denote by $f_{i}: X_{i} \rightarrow A^{k_{i}}, g_{i}: A^{k_{i}} \rightarrow A^{k}$ the canonical injections and denote by $f_{i}^{\prime}: A^{k_{i}} \rightarrow X_{i}, g_{i}^{\prime}: A^{k} \rightarrow A^{k_{i}}$ the canonical projections. Since P is (A, R)-strongly faithful there exists an (A, R)-monomorphism $l: A \rightarrow P^{t}$ for some $t>0$. Hence, there exists $\pi \in \operatorname{Hom}_{R}\left(V^{t}, A\right)$ such that $\pi \circ l=\operatorname{id}_{A}$. Then, the composition $\left(\oplus_{j=1}^{k} l\right) \circ g_{i} \circ f_{i} \in \operatorname{Hom}_{A}\left(X_{i}, P^{t k}\right)$ is an (A, R)-monomorphism. In fact, $f_{i}^{\prime} \circ g_{i}^{\prime} \circ\left(\oplus_{j=1}^{k} \pi\right) \in \operatorname{Hom}_{R}\left(V^{t k}, X_{i}\right)$ satisfies

$$
f_{i}^{\prime} \circ g_{i}^{\prime} \circ\left(\oplus_{j=1}^{k} \pi\right) \circ\left(\oplus_{j=1}^{k} l\right) \circ g_{i} \circ f_{i}=\operatorname{id}_{X_{i}}
$$

As X_{i} is (A, R)-injective, then the map $\left(\oplus_{j=1}^{k} l\right) \circ g_{i} \circ f_{i}$ splits over A. Therefore, X_{i} is an A-summand of $P^{t k}$, hence $X_{i} \in \operatorname{add} P$.

If some $X_{i}=0$, then $\operatorname{domdim}_{(A, R)} X=+\infty=P-\operatorname{domdim}_{(A, R)} X$. This shows that if $\operatorname{domdim}_{(A, R)} X \geq$ n, then P - $\operatorname{domdim}_{(A, R)} X \geq n$. Hence $\operatorname{domdim}_{(A, R)} X \leq P-\operatorname{domdim}_{(A, R)} X$.

Now since each module in add P is projective (A, R)-injective, it follows that $P-\operatorname{domdim}_{(A, R)} X \leq$ $\operatorname{domdim}_{(A, R)} X$. This concludes the proof.

Analogously, we have the right version,
Proposition 3.16. Assume that A is a projective Noetherian R-algebra with a projective (A, R)-injectivestrongly faithful right A-module V. Then,

$$
\begin{equation*}
V-\operatorname{domdim}_{(A, R)} X=\operatorname{domdim}_{(A, R)} X, \quad X \in \bmod -A \tag{14}
\end{equation*}
$$

Proof. It is analogous to Proposition 3.15 .

3.5 Modules with relative dominant dimension at least two

For given $X \in A$-mod, $V \in \bmod -A$, denote by C the endomorphism algebra $\operatorname{End}_{A}(V)$ and by α_{X} the map $X \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X\right)$ given by $\alpha_{X}(x)(v)=v \otimes x, v \in V, x \in X$. This is an $\left(A, \operatorname{End}_{A}(X)^{o p}\right)$-bimodule homomorphism. In fact,
$\alpha_{X}(a \cdot x)(v)=v \otimes a x=v a \otimes x=\alpha_{X}(x)(v a)=\left(a \cdot \alpha_{X}(x)\right)(v), a \in A, v \in V, x \in X$
$\alpha_{X}(x \cdot b)(v)=\alpha_{X}(b(x))(v)=v \otimes b(x)=v \otimes(x \cdot b)=(v \otimes x) \cdot b=\left(\alpha_{X}(x) \cdot b\right)(v), b \in \operatorname{End}_{A}(X)^{o p}, v \in V, x \in X$.
In addition, α is a natural transformation between the functors $\operatorname{Id}_{A-\bmod }$ and $\operatorname{Hom}_{C}(V,-) \circ V \otimes_{A}-$.
The following two lemmas, although being very technical, are crucial to our purposes. We note also the following lemma involving the Schur functor which will be essential to relative dominant dimension.

Lemma 3.17. Let $V \in \operatorname{proj}-A$. Let $C=\operatorname{End}_{A}(V)$ and the functors $F=V \otimes_{A}-: A$-mod $\rightarrow C$-mod $G=\operatorname{Hom}_{C}(V,-): C-\bmod \rightarrow A-\bmod$. The composition of functors $F \circ G: C-\bmod \rightarrow C-\bmod$ is an equivalence of categories. Moreover $\xi_{M}: V \otimes_{A} \operatorname{Hom}_{C}(V, M) \rightarrow M$, given by $\xi_{M}(v \otimes \phi)=\phi(v), v \in V, \phi \in$ $\operatorname{Hom}_{C}(V, M)$ is a natural isomorphism for every $M \in C$-mod.

Proof. Fix $f \in \operatorname{Hom}_{C}(M, N)$. We have the commutative diagram,

In fact, $\xi_{N} \circ V \otimes_{A} \operatorname{Hom}_{C}(V, f)(v \otimes \phi)=\xi_{N}(v \otimes f \circ \phi)=f \circ \phi(v)$. Whereas $f \circ \xi_{M}(v \otimes \phi)=f(\phi(v))$ for every $v \otimes \phi \in V \otimes_{A} \operatorname{Hom}_{C}(V, M)$.

Consider the diagram

Here some remarks about these maps are in order. The map $\psi_{\operatorname{Hom}_{C}(V, M)}$ is the canonical multiplication map which is an isomorphism since $\operatorname{Hom}_{A}(V, A) \in A$-proj. The map ρ is the map given by Tensorhom adjunction, and hence it is an isomorphism. The map ψ_{V} is the multiplication map which is an isomorphism thanks to V being a projective right A-module, thus $\operatorname{Hom}_{C}\left(\psi_{V}, M\right)$ is an isomorphism. The map π is the canonical map given by evaluation at the identity, so an isomorphism as well. The map w is the natural transformation from the identity functor on V to its double dual. Since V is
projective, then w is an isomorphism. We claim that this is a commutative diagram. In fact, for $v \otimes g \in V \otimes_{A} \operatorname{Hom}_{C}(V, M), v^{\prime} \otimes g^{\prime} \in V \otimes_{A} \operatorname{Hom}_{A}(V, A)$, we have

$$
\begin{aligned}
\operatorname{Hom}_{C}\left(\psi_{V}, M\right) \circ \pi^{-1} \circ \xi_{M}(v \otimes g)\left(v^{\prime} \otimes g^{\prime}\right) & =\pi^{-1} \circ \xi_{M}(v \otimes g) \circ \psi_{V}\left(v^{\prime} \otimes g^{\prime}\right) \\
& =\pi^{-1} \circ \xi_{M}(v \otimes g)\left(v^{\prime} g^{\prime}(-)\right)=\pi^{-1}(g(v))\left(v^{\prime} g^{\prime}(-)\right) \\
& =v^{\prime} g^{\prime}(-) \cdot g(v)=g\left(v^{\prime} g^{\prime}(-) \cdot v\right)=g\left(v^{\prime} g^{\prime}(v)\right)
\end{aligned}
$$

$$
\begin{aligned}
\rho \circ \psi_{\operatorname{Hom}_{C}(V, M)} \circ w \otimes \operatorname{id}_{\operatorname{Hom}_{C}(V, M)}(v \otimes g)\left(v^{\prime} \otimes g^{\prime}\right) & =\rho \circ \psi_{\operatorname{Hom}_{C}(V, M)}(w(v) \otimes g)\left(v^{\prime} \otimes g^{\prime}\right) \\
& =\rho(w(v)(-) g)\left(v^{\prime} \otimes g^{\prime}\right)=w(v)() \cdot g\left(g^{\prime}\right)\left(v^{\prime}\right) \\
& =\left(w(v)\left(g^{\prime}\right) \cdot g\right)\left(v^{\prime}\right)=g^{\prime}(v) \cdot g\left(v^{\prime}\right)=g\left(v^{\prime} g^{\prime}(v)\right)
\end{aligned}
$$

Now by the commutativity of this diagram, it follows that ξ_{M} is an isomorphism.
The following can be seen as the relative version of Proposition 4.8 of Tac73.
Lemma 3.18. Let P be a projective (A, R)-injective left A-module and let V be a projective (A, R) strongly faithful right A-module. Fix $C=\operatorname{End}_{A}(V), B=\operatorname{End}_{A}(P)^{o p}$. Then, the following assertions hold.
(a) The canonical map $\alpha_{P}: P \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)$, given by $\alpha_{P}(p)(v)=v \otimes p, v \in V, p \in P$, is an isomorphism of (A, B)-bimodules.
(b) The canonical map $\psi: B \rightarrow \operatorname{End}_{C}\left(V \otimes_{A} P\right)^{o p}$, given by $\psi(f)(v \otimes p)=v \otimes f(p), f \in B, v \in V, p \in P$, is an isomorphism as left B-modules and as R-algebras.
(c) $V \otimes_{A} P$ is (C, R)-injective as left C-module.

Proof. We will start by showing that α_{P} (which we will abbreviate to just α) is an (A, R)-monomorphism. Since P is A-projective there are maps $k_{P} \in \operatorname{Hom}_{A}\left(P, A^{s}\right), \pi_{P} \in \operatorname{Hom}_{A}\left(A^{s}, P\right)$ satisfying $\pi_{P} \circ k_{P}=$ id_{P}. Since V is (A, R)-strongly faithful there exists $i \in \operatorname{Hom}_{A}\left(A, V^{t}\right)$ and $\varepsilon \in \operatorname{Hom}_{R}\left(V^{t}, A\right)$ such that $\varepsilon \circ i=\operatorname{id}_{A}$. In addition, consider the A-maps arising from the direct sum $V^{t}: \nu_{j} \in \operatorname{Hom}_{A}\left(V, V^{t}\right)$, $\lambda_{j} \in \operatorname{Hom}_{A}\left(V^{t}, V\right)$ satisfying $\lambda_{j} \circ \nu_{j}=\operatorname{id}_{V}$, the multiplication map $\mu \in \operatorname{Hom}_{A}\left(V \otimes_{A} A, V\right)$ and the canonical maps $\gamma_{j} \in \operatorname{Hom}_{A}\left(V^{s},\left(V^{t}\right)^{s}\right), \gamma_{j}\left(v_{1}, \ldots, v_{s}\right)=\left(\nu_{j}\left(v_{1}\right), \ldots, \nu_{j}\left(v_{s}\right)\right)$ for $1 \leq j \leq t$.

Define τ the R-map $\operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right) \rightarrow P$ given by

$$
\tau(h)=\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s} \circ \operatorname{id}_{V} \otimes_{A} k_{P} \circ h \circ \lambda_{j} \circ i\left(1_{A}\right), h \in \operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)
$$

Hence,

$$
\begin{align*}
\tau \circ \alpha(p) & =\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s} \circ \operatorname{id}_{V} \otimes_{A} k_{P} \circ \alpha(p)\left(\lambda_{j} \circ i\left(1_{A}\right)\right)=\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s} \circ \operatorname{id}_{V} \otimes_{A} k_{P}\left(\lambda_{j} \circ i\left(1_{A}\right) \otimes p\right) \\
& =\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s}\left(\lambda_{j} \circ i\left(1_{A}\right) \otimes k_{P}(p)\right)=\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s}\left(\lambda_{j} \circ i\left(1_{A}\right) \otimes\left(k_{P}(p)_{1}, \ldots, k_{P}(p)_{s}\right)\right. \\
& \left.=\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j}\left(\lambda_{j} \circ i\left(1_{A}\right) k_{P}(p)_{1}, \ldots, \lambda_{j} \circ i\left(1_{A}\right) k_{P}(p)_{s}\right)\right) \\
& =\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j}\left(\lambda_{j} \circ i\left(k_{P}(p)_{1}\right), \ldots, \lambda_{j} \circ i\left(k_{P}(p)_{s}\right)\right) \\
& =\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ\left(\nu_{j} \lambda_{j} \circ i\left(k_{P}(p)_{1}\right), \ldots, \nu_{j} \lambda_{j} \circ i\left(k_{P}(p)_{s}\right)\right)=\pi_{P} \circ \varepsilon^{s}\left(i\left(k_{P}(p)_{1}\right), \ldots, i\left(k_{P}(p)_{s}\right)\right) \\
& =\pi_{P}\left(k_{P}(p)_{1}, \ldots, k_{P}(p)_{s}\right)=\pi_{P}\left(k_{P}(p)\right)=p, \quad p \in P . \tag{15}
\end{align*}
$$

Thus, $\tau \circ \alpha=\operatorname{id}_{P}$ and α is an (A, R)-monomorphism.
We claim that α is an essential embedding, that is, im $\alpha \cap A \beta \neq 0$ if $0 \neq \beta \in \operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)$.
Denote by $\pi_{V}: A^{l} \rightarrow V, k_{V}: V \rightarrow A^{l}, \pi_{j} \in \operatorname{Hom}_{A}\left(A^{l}, A\right), k_{j} \in \operatorname{Hom}_{A}\left(A, A^{l}\right)$ the canonical surjections and injections induced by the direct sum $A^{l}, 1 \leq j \leq t$. For each j, define $e_{V, j}=\pi_{V} \circ k_{j}\left(1_{A}\right) \in V$ and for each $y \in V$, define $\phi_{y, j} \in \operatorname{End}_{A}(V)=C$ given by $\phi_{y, j}(x)=y \cdot \pi_{j} \circ k_{V}(x), x \in V$. Then,

$$
\begin{align*}
\sum_{j} \phi_{e_{V, j}, j} \cdot v & =\sum_{j} \phi_{e_{V, j}, j}(v)=\sum_{j} e_{V, j} \cdot \pi_{j} \circ k_{V}(v)=\sum_{j} \pi_{V} \circ k_{j}\left(1_{A}\right) \cdot \pi_{j} \circ k_{V}(v) \\
& =\sum_{j} \pi_{V} \circ k_{j}\left(1_{A} \pi_{j} \circ k_{V}(v)\right)=\pi_{V} \circ k_{V}(v)=v \tag{16}
\end{align*}
$$

Let $0 \neq \beta \in \operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)$. Hence there exists $v \in V$ such that $\beta(v) \neq 0$. Moreover, for $y \in V$

$$
\begin{equation*}
\sum_{j} \pi_{j} \circ k_{V}(v) \cdot \beta(y)=\sum_{j} \beta\left(y \pi_{j} \circ k_{V}(v)\right)=\sum_{j} \beta\left(\phi_{y, j}(v)\right)=\sum_{j} \beta\left(\phi_{y, j} \cdot v\right)=\sum_{j} \phi_{y, j} \beta(v) \tag{17}
\end{equation*}
$$

Assume that $\beta(v)=\sum_{i} x_{i} \otimes p_{i} \in V \otimes_{A} P$. Then,

$$
\begin{aligned}
\sum_{j} \phi_{y, j} \beta(v) & =\sum_{j, i} \phi_{y, j} x_{i} \otimes p_{i}=\sum_{i, j}\left(\phi_{y, j} \cdot x_{i}\right) \otimes p_{i}=\sum_{i, j}\left(y \cdot \pi_{j} \circ k_{V}\left(x_{i}\right)\right) \otimes p_{i}=\sum_{i, j} y \otimes \pi_{j} \circ k_{V}\left(x_{i}\right) p_{i} \\
& =\alpha\left(\sum_{i, j} \pi_{j} \circ k_{V}\left(x_{i}\right) p_{i}\right)(y) \Longrightarrow \alpha\left(\sum_{i, j} \pi_{j} \circ k_{V}\left(x_{i}\right) p_{i}\right)=\left(\sum_{j} \pi_{j} \circ k_{V}(v)\right) \cdot \beta \in \operatorname{im} \alpha \cap A \beta
\end{aligned}
$$

Since

$$
\left.\left.\sum_{j} \pi_{j} \circ k_{V}(v)\right) \cdot \beta\left(e_{V, j}\right)=\sum_{j} \beta\left(e_{V, j} \pi_{j} \circ k_{V}(v)\right)\right)=\sum_{j} \beta\left(\phi_{e_{V, j}, j} v\right)=\beta\left(\sum_{j} \phi_{e_{V, j}, j} v\right)=\beta(v) \neq 0
$$

it follows that α is an essential embedding.
Since P is (A, R)-injective and α is (A, R)-mono, there exists $h \in \operatorname{Hom}_{A}\left(\operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right), P\right)$ such that $h \circ \alpha=\operatorname{id}_{P}$. Assume that there exists $0 \neq \beta \in \operatorname{im}_{\left(\operatorname{id}_{\operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)}-\alpha \circ h\right) \text {. As } \alpha \text { is an essential }}$ embedding, $0 \neq \operatorname{im} \alpha \cap A \beta \subset \operatorname{im} \alpha \cap \operatorname{im}\left(\operatorname{id}_{\operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)}-\alpha \circ h\right)=0$ contradicting the existence of β. Thus, $\alpha \circ h=\operatorname{id}_{\operatorname{Hom}_{C}\left(V, V \otimes_{A} P\right)}$. So, α is an isomorphism.

The map ψ given in (b) is an B-homomorphism since

$$
\begin{align*}
\psi(g \circ f)(v \otimes p) & =\psi(f \circ g)(v \otimes p)=v \otimes f \circ g(p)=v \otimes f(p \cdot g)=\left(\mathrm{id}_{V} \otimes f\right)(v \otimes p \cdot g) \tag{18}\\
& =\left(g \cdot\left(\operatorname{id}_{V} \otimes f\right)\right)(v \otimes p), v \otimes p \in V \otimes_{A} P, f, g \in B \tag{19}
\end{align*}
$$

The map ψ is a homomorphism of R-algebras since

$$
\begin{array}{r}
\psi(g \cdot f)=\operatorname{id}_{V} \otimes_{A}(f \circ g)=\operatorname{id}_{V} \otimes_{A} f \circ \operatorname{id}_{V} \otimes_{A} g=\operatorname{id}_{V} \otimes_{A} g \cdot \operatorname{id}_{V} \otimes_{A} f=\psi(g) \cdot \psi(f), f, g \in B \\
\psi\left(\operatorname{id}_{P}\right)=\operatorname{id}_{V \otimes_{A} P} \tag{21}
\end{array}
$$

We claim that ψ is bijective. Towards this goal, our procedure will be as follows. We will construct a commutative diagram

where H will be a split mono and k_{B} is the natural injection.
Thanks to $\left(\alpha_{X}\right)_{X \in A-m o d}$ being a natural transformation we obtain by (a) that $\alpha_{P^{s}}$ is an isomorphism. We can see that, as right B-modules,

$$
\begin{equation*}
P^{s} \simeq \operatorname{Hom}_{A}\left(A^{s}, P\right) \simeq \operatorname{Hom}_{A}(P, P) \oplus \operatorname{Hom}_{A}(K, P)=B \oplus \operatorname{Hom}_{A}(K, P), \tag{22}
\end{equation*}
$$

for some A-module K and π_{K} and k_{K} being the canonical maps making K an summand of A^{s}. We denote by k_{B}, k_{X} the canonical injections of this direct sum 22 and π_{B} and π_{X} the canonical surjections, where $X=\operatorname{Hom}_{A}(K, P)$. So, explicitly, $k_{B}(b)=b \circ \pi_{P}\left(1_{A}, \ldots, 1_{A}\right)$. In order to define H, we first consider the following isomorphism τ given by the following commutative diagram:

where $\sigma\left(x_{1} \otimes p_{1}, \ldots, x_{s} \otimes p_{s}\right)=x_{1} \otimes\left(p_{1}, 0, \ldots, 0\right)+\ldots+x_{s} \otimes\left(0, \ldots, 0, p_{s}\right)$.
Consider $H=\tau \circ \operatorname{Hom}_{C}\left(V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s}, V \otimes_{A} P\right)$, where θ is the isomorphism $\left(V \otimes_{A} A\right)^{s} \rightarrow V \otimes_{A} A^{s}$. Then,

$$
\begin{align*}
H \circ \psi(b)(v) & =\tau\left(\psi(b) \circ V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s}\right)(v) \\
& =\sigma\left(\psi(b) \circ V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s}(v, 0, \ldots, 0), \ldots, \psi(b) \circ V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s}(0, \ldots, 0, v)\right) \\
& =\sigma\left(\psi(b) \circ V \otimes_{A} \pi_{P} \theta\left(v \otimes 1_{A}, 0, \ldots, 0\right), \ldots, \psi(b) \circ V \otimes_{A} \pi_{P} \theta\left(0, \ldots, 0, v \otimes_{A} 1_{A}\right)\right) \tag{23}\\
& =\sigma\left(\psi(b) \circ V \otimes_{A} \pi_{P}\left(v \otimes\left(1_{A}, 0, \ldots, 0\right)\right), \ldots, \psi(b) \circ V \otimes_{A} \pi_{P}\left(v \otimes\left(0, \ldots, 0,1_{A}\right)\right)\right) \tag{24}\\
& =\sigma\left(v \otimes b \pi_{P}\left(1_{A}, \ldots, 0\right), \ldots, v \otimes b \pi_{P}\left(0, \ldots, 1_{A}\right)\right)=v \otimes b \pi_{P}\left(1_{A}, \ldots, 1_{A}\right) \tag{25}\\
\alpha_{P^{s}} \circ k_{B}(b)(v) & =\alpha_{P^{s}}\left(b \circ \pi_{P}\left(1_{A}, \ldots, 1_{A}\right)\right)(v)=v \otimes b \pi_{P}\left(1_{A}, \ldots, 1_{A}\right), v \in V, b \in B . \tag{26}
\end{align*}
$$

Hence, $H \circ \psi$ is injective. In particular, ψ is injective. Since $V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s} \in \operatorname{Hom}_{C}\left(V^{s}, V \otimes_{A} P\right)$ is the surjection that gives $V \otimes_{A} P$ as C-summand of V^{s} the map $\operatorname{Hom}_{C}\left(V \otimes_{A} \pi_{P} \circ \theta \circ\left(\mu^{-1}\right)^{s}, V \otimes_{A} P\right)$ is split monomorphism. So, H is a split monomorphism. Thus, there exists a map H^{\prime} such that $H^{\prime} \circ H=\mathrm{id}$. In particular, $\psi \circ \pi_{B}=H^{\prime} \circ \alpha_{P^{s}} \circ k_{B} \circ \pi_{B}=H^{\prime} \circ \alpha_{P^{s}}$ is surjective if $H^{\prime} \circ \alpha_{P^{s}} \circ k_{X} \circ \pi_{X}=0$. So, it remains to show that $H^{\prime} \circ \alpha_{P s} \circ k_{X} \circ \pi_{X}=0$.

Observe that $H^{\prime}=\operatorname{Hom}_{C}\left(\mu^{s} \circ \theta^{-1} \circ V \otimes_{A} k_{P}, V \otimes_{A} P\right) \circ \tau^{-1}$ and in the following $\pi_{j}^{A} \in \operatorname{Hom}_{A}\left(A^{s}, A\right)$, $k_{j}^{A} \in \operatorname{Hom}_{A}\left(A, A^{s}\right)$ will denote the surjections and injections of the direct sum A^{s}.

Thus,

$$
\begin{aligned}
H^{\prime} \alpha_{P^{s}} k_{X} \pi_{X}\left(p_{1}, \ldots, p_{s}\right)(v \otimes p) & =\tau^{-1}\left(\alpha_{P^{s}} k_{X} \pi_{X}\left(p_{1}, \ldots, p_{s}\right)\right)\left(\mu^{s} \circ \theta^{-1} \circ V \otimes_{A} k_{P}(v \otimes p)\right) \\
& =\tau^{-1}\left(\alpha_{P^{s}} k_{X} \pi_{X}\left(p_{1}, \ldots, p_{s}\right)\right)\left(v \pi_{1}^{A} k_{P}(p), \ldots, v \pi_{s}^{A} k_{P}(p)\right) \\
& =\sum_{i=1}^{s} v \pi_{i}^{A} k_{P}(p) \otimes \sum_{j} \pi_{j}^{A} k_{K} \pi_{K} k_{i}^{A}\left(1_{A}\right) p_{j} \\
& =v \otimes \sum_{i, j=1}^{s} \pi_{j}^{A} k_{K} \pi_{K} k_{i}^{A} \pi_{i}^{A}\left(k_{P}(p)\right) p_{j} \\
& =v \otimes \sum_{j=1}^{s} i_{j}^{A} k_{K} \pi_{K} k_{P}(p) p_{j}=0, \quad p_{i}, p \in P, v \in V, 1 \leq i \leq s
\end{aligned}
$$

The last equality follows since $\pi_{K} \circ k_{P}=0$. So, (b) follows.
Consider the canonical C-monomorphism $\varepsilon_{V \otimes_{A} P}: V \otimes_{A} P \rightarrow \operatorname{Hom}_{R}\left(C, V \otimes_{A} P\right)$. The following diagram is commutative

where $\delta: P \rightarrow \operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right)$ is the morphism given by $\delta(p)(v)=v \otimes p$, and f is canonical map given by tensor-hom adjunction. We want to show that the map δ is an (A, R)-monomorphism. For that purpose, we need further notation. Define τ^{\prime} the R-map $\operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right) \rightarrow P$ given by

$$
\tau(h)=\sum_{j} \pi_{P} \circ \varepsilon^{s} \circ \gamma_{j} \circ \mu^{s} \circ \operatorname{id}_{V} \otimes_{A} k_{P} \circ h \circ \lambda_{j} \circ i\left(1_{A}\right), h \in \operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right)
$$

Using the same computations as in 15, it follows that $\tau^{\prime} \circ \delta=\operatorname{id}_{P}$. Since P is (A, R)-injective, it follows that $P \in \operatorname{add}_{A} \operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right)$. Therefore, $V \otimes_{A} P \in \operatorname{add}_{C} V \otimes_{A} \operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right)$. By Tensor-Hom adjunction and Lemma 3.17,

$$
\begin{equation*}
V \otimes_{A} \operatorname{Hom}_{R}\left(V, V \otimes_{A} P\right) \simeq V \otimes_{A} \operatorname{Hom}_{C}\left(V, \operatorname{Hom}_{R}\left(C, V \otimes_{A} P\right)\right) \simeq \operatorname{Hom}_{R}\left(C, V \otimes_{A} P\right) \tag{27}
\end{equation*}
$$

Thus, $V \otimes_{A} P \in \operatorname{add}_{C} \operatorname{Hom}_{R}\left(C, V \otimes_{A} P\right)$ and $V \otimes_{A} P$ is (C, R)-injective.
Lemma 3.19. Let P be a projective (A, R)-strongly faithful left A-module and let V be a projective (A, R)-injective right A-module. Denote $C=\operatorname{End}_{A}(V), B=\operatorname{End}_{A}(P)^{o p}$. Then, the following assertions hold.
(a) The canonical map $\alpha_{V}: V \rightarrow \operatorname{Hom}_{B}\left(P, V \otimes_{A} P\right)$, given by $\alpha_{V}(v)(p)=v \otimes p, v \in V, p \in P$, is an isomorphism of (C, A)-bimodules.
(b) The canonical map $\psi_{C}: C \rightarrow \operatorname{End}_{B}\left(V \otimes_{A} P\right)$, given by $\psi_{C}(f)(v \otimes p)=f(v) \otimes p, f \in B, v \in V, p \in P$, is an isomorphism as left C-modules and as R-algebras.
(c) $V \otimes_{A} P$ is (B, R)-injective as right B-module.

Proof. It is the dual version of Theorem 3.18.
At this point, it is not yet clear that the existence of a projective relative injective strongly faithful left module implies the existence of a projective relative injective strongly faithful right module. For this we will need change of rings techniques. We are aiming to obtain better tools to compute relative dominant dimension of modules for algebras with positive relative dominant dimension. Given that, we need to require for now the existence of both a projective relative injective strongly faithful left module and a a projective relative injective strongly faithful right module.

Definition 3.20. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let $P \in A$-mod and $V \in \bmod -A$. We call a triple (A, P, V) a relative QF3 R-algebra, or just RQF3 algebra provided P is an A-projective (A, R)-injective-strongly faithful left A-module and V is an A projective (A, R)-injective-strongly faithful right A-module.

It will become clear in Corollary 6.6 that RQF3 algebras are exactly the algebras having positive relative dominant dimension.

Given $X \in A$-mod, $V \in \bmod -A$, denote by Φ_{X} the map $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \rightarrow D X$ defined by $\Phi_{X}(g \otimes v)=g(v), v \in V, g \in \operatorname{Hom}_{A}(V, D X)$. This map is an $\left(\operatorname{End}_{A}(X)^{o p}, A\right)$-bimodule homomorphism. In fact, if $b \in \operatorname{End}_{A}(X)^{o p}, g \otimes v \in \operatorname{Hom}_{A}(V, D X) \otimes_{C} V$ and $a \in A$, then

$$
\begin{align*}
& \left.\Phi_{X}(b \cdot(g \otimes v))=\Phi_{X}(b \cdot g) \otimes v\right)=(b \cdot g)(v)=b g(v)=b \Phi_{X}(g \otimes v) \tag{28}\\
& \Phi_{X}((g \otimes v) \cdot a)=\Phi_{X}(g \otimes v \cdot a)=g(v \cdot a)=g(v) a=\Phi_{X}(g \otimes v) \cdot a \tag{29}
\end{align*}
$$

Dually, we can define the map $\delta_{Y}: P \otimes_{B} \operatorname{Hom}_{A}(P, D Y) \rightarrow D Y$, given by $\delta_{Y}(p \otimes h)=h(p), p \in P$, $h \in \operatorname{Hom}_{A}(P, D Y)$ for any $P \in A-\bmod$ and $Y \in \bmod -A$.

In the same manner, δ_{Y} is an $\left(A, \operatorname{End}_{A}(Y)\right)$-bimodule homomorphism.
Lemma 3.21. Let (A, P, V) be a RQF3 algebra. Denote $C=\operatorname{End}_{A}(V), B=\operatorname{End}_{A}(P)^{o p}$. Then, the following assertions hold.
(a) $\operatorname{add}_{A} D V=\operatorname{add}_{A} P$. Furthermore, B is Morita equivalent to C.
(b) $V \otimes_{A} P$ satisfies a double centralizer property

$$
\operatorname{End}_{B}\left(V \otimes_{A} P\right) \simeq C, \quad \operatorname{End}_{C}\left(V \otimes_{A} P\right)^{o p} \simeq B
$$

and $V \otimes_{A} P$ is a left (C, R)-injective-cogenerator and a right (B, R)-injective-cogenerator.
(c) $P \in \bmod -B$ is a B-generator (B, R)-cogenerator and R-projective;
(d) $V \in C$-mod is a C-generator (C, R)-cogenerator and R-projective.
(e) The canonical map $\Phi_{X}: \operatorname{Hom}_{A}(V, D X) \otimes_{C} V \rightarrow D X$, given by $\Phi_{X}(g \otimes v)=g(v), v \in V, g \in$ $\operatorname{Hom}_{A}(V, D X)$, is an A-isomorphism for any $X \in \operatorname{add}_{A} P$.
(f) The canonical map $\delta_{Y}: P \otimes_{B} \operatorname{Hom}_{A}(P, D Y) \rightarrow D Y$, given by $\delta_{Y}(p \otimes h)=h(p), p \in P, h \in$ $\operatorname{Hom}_{A}(P, D Y)$, is an A-isomorphism for any $Y \in \operatorname{add}_{A} V$.
Proof. By Lemma 2.11, $D P$ is an A-projective (A, R)-injective right module and $D V$ is an A-projective (A, R)-injective left module. According to Lemma 3.7, $D P \in \operatorname{add} V$ and $D V \in \operatorname{add} P$. Hence, $P \in \operatorname{add} D V$ and $C \simeq \operatorname{End}_{A}(D V)^{o p}$ is Morita equivalent to $B=\operatorname{End}_{A}(P)^{o p}$. Thus, (a) follows.

Note that $D\left(V \otimes_{A} P\right) \simeq \operatorname{Hom}_{A}(P, D V) . \operatorname{By}(a), P \in \operatorname{add}_{A} D V$. Hence,

$$
\begin{equation*}
{ }_{B} B=\operatorname{Hom}_{A}(P, P) \in \operatorname{add}_{B} \operatorname{Hom}_{A}(P, D V)=\operatorname{add}_{B} D\left(V \otimes_{A} P\right) \tag{30}
\end{equation*}
$$

Hence $D B \in \operatorname{add}_{B} V \otimes_{A} P$. So, $V \otimes_{A} P$ is a right (B, R)-cogenerator. In the same fashion, by (a) $V \in \operatorname{add}_{A} D P$. Consequently, $C_{C}=\operatorname{Hom}_{A}(V, V) \in \operatorname{add}_{C} \operatorname{Hom}_{A}(V, D P)=\operatorname{add}_{C} D\left(V \otimes_{A} P\right)$. Then, $V \otimes_{A} P$ is a left (C, R)-cogenerator. Therefore, it holds the double centralizer property on $V \otimes_{A} P$ between C and B. By Lemma 3.19 (c) and Lemma 3.18 (c), (b) follows.

Since $P \in A$-proj there exists $s>0$ such that $A^{s} \simeq P \oplus K$ as left A-modules. Thus, as right A-modules,

$$
\begin{equation*}
A^{s} \simeq \operatorname{Hom}_{A}\left(A, A_{A}\right)^{s} \simeq \operatorname{Hom}_{A}\left(A^{s}, A_{A}\right) \simeq \operatorname{Hom}_{A}\left(P \oplus K, A_{A}\right) \simeq \operatorname{Hom}_{A}\left(P, A_{A}\right) \oplus \operatorname{Hom}_{A}\left(K, A_{A}\right) \tag{31}
\end{equation*}
$$

Therefore, as right B-modules

$$
\begin{align*}
P^{s} \simeq A^{s} \otimes_{A} P & \simeq \operatorname{Hom}_{A}\left(P, A_{A}\right) \oplus \operatorname{Hom}_{A}\left(K, A_{A}\right) \otimes_{A} P \simeq \operatorname{Hom}_{A}\left(P, A_{A}\right) \otimes_{A} P \oplus \operatorname{Hom}_{A}\left(K, A_{A}\right) \otimes_{A} P \\
& \simeq \operatorname{Hom}_{A}(P, P) \oplus \operatorname{Hom}_{A}\left(K, A_{A}\right) \otimes_{A} P=B \oplus \operatorname{Hom}_{A}\left(K, A_{A}\right) \otimes_{A} P . \tag{32}
\end{align*}
$$

Hence, P is a right B-generator. In the same fashion, V is a left C-generator.
Since V is projective as right A-module, there exists $t>0$ such that $A^{t} \simeq V \oplus K^{\prime}$ as right A-modules. So, as right B-modules,

$$
\begin{equation*}
P^{t} \simeq A^{t} \otimes_{A} P \simeq\left(V \oplus K^{\prime}\right) \otimes_{A} P \simeq V \otimes_{A} P \oplus K^{\prime} \otimes_{A} P \tag{33}
\end{equation*}
$$

Hence $V \otimes_{A} P \in \operatorname{add}_{B} P$. In particular, by (b) P is also a right (B, R)-cogenerator. In the same way, V is a left (C, R)-cogenerator. This completes the proof for (c) and (d).

We claim that Φ_{X} and δ_{X} are compatible with direct sums. Let $X=X_{1} \oplus X_{2} \in A$-mod. Denote by k_{i} the canonical injections and π_{i} the canonical projections $i=1,2$. This follows from the following commutative diagram

$$
\left.\begin{array}{rl}
\operatorname{Hom}_{A}\left(V, D\left(X_{1} \oplus X_{2}\right)\right) \otimes_{C} V \xrightarrow{\Phi_{X_{1} \oplus X_{2}}} D\left(X_{1} \oplus X_{2}\right) \\
& \downarrow\left(D k_{1} \circ-, D k_{2} \circ-\right) \otimes_{C \text { idd }} \\
\operatorname{Hom}_{A}\left(V, D X_{1}\right) \otimes_{C} V & \stackrel{\downarrow}{\oplus}\left(D k_{1}, D k_{2}\right)
\end{array}\right)
$$

Since both columns are isomorphisms it follows our claim. The reasoning for δ_{X} is analogous.
Now since $\Phi_{D V}$ is the isomorphism $\operatorname{Hom}_{A}(V, D D V) \otimes_{C} V \simeq \operatorname{Hom}_{A}(V, V) \otimes_{C} V \simeq C \otimes_{C} V \simeq V \simeq D D V$ it follows that Φ_{X} is an isomorphism for any $X \in \operatorname{add} D V=\operatorname{add} P$.

We should remark that the statement of Theorem 3.21 is a generalization of (5.1) of [Tac73].
Remark 3.22. The canonical map $\Phi: \operatorname{Hom}_{A}(V, Y) \otimes_{C} V \rightarrow Y$ is an A-isomorphism for any $Y \in$ $\operatorname{Add}_{A}(V)$. This follows from the fact that the tensor product commutes with arbitrary coproducts and since V is a finitely generated A-projective module the $H o m$ functor $\operatorname{Hom}_{A}(V,-)$ commutes with arbitrary coproducts (see Zim14, Lemma 4.1.9]). Hence we can apply the same argument as in Lemma 3.21. The dual statement also holds for the canonical maps δ.

The importance of these canonical maps Φ_{X} and α_{X} stems from the following theorem.
Proposition 3.23. Let (A, P, V) be a $R Q F 3$ algebra. Denote $C=\operatorname{End}_{A}(V), B=\operatorname{End}_{A}(P)^{o p}$.
Let $X \in A$-mod $\cap R$-proj and let $Y \in \bmod -A \cap R$-proj, then:
(a) $\operatorname{domdim}_{(A, R)} X \geq 1$ if and only if the canonical map $\Phi_{X}: \operatorname{Hom}_{A}(V, D X) \otimes_{C} V \rightarrow D X$ is an epimorphism.
(b) If $\operatorname{domdim}_{(A, R)} X \geq 1$, then $\alpha_{X}: X \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X\right)$ is an (A, R)-monomorphism. Converse holds if $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in R$-proj.
(c) $\operatorname{domdim}_{(A, R)} Y \geq 1$ if and only if the canonical map $\delta_{Y}: P \otimes_{B} \operatorname{Hom}_{A}(P, D Y) \rightarrow D Y$ is an epimorphism.
(d) If $\operatorname{domdim}_{(A, R)} Y \geq 1$, then $\alpha_{Y}: Y \rightarrow \operatorname{Hom}_{B}\left(P, Y \otimes_{A} P\right)$ is a right (A, R)-monomorphism. Converse holds if $P \otimes_{B} \operatorname{Hom}_{A}(P, D Y) \in R$-proj.
(e) The following assertions are equivalent:
(i) $\operatorname{domdim}_{(A, R)} X \geq 2$;
(ii) The canonical map $\Phi_{X}: \operatorname{Hom}_{A}(V, D X) \otimes_{C} V \rightarrow D X$ is a right A-isomorphism;
(iii) $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in R$-proj and the canonical map $\alpha_{X}: X \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X\right)$ is a left A-isomorphism.
(f) The following assertions are equivalent:
(i) $\operatorname{domdim}_{(A, R)} Y \geq 2$;
(ii) The canonical map $\delta_{Y}: P \otimes_{B} \operatorname{Hom}_{A}(P, D Y) \rightarrow D Y$ is a left A-isomorphism;
(iii) $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in R$-proj and the canonical map $\alpha_{Y}: Y \rightarrow \operatorname{Hom}_{B}\left(P, Y \otimes_{A} P\right)$ is a right A-isomorphism.

Proof. (a). Assume that $\operatorname{domdim}_{(A, R)} X \geq 1$. Then, there exists an (A, R)-monomorphism $f: X \rightarrow X_{0}$ with $X_{0} \in \operatorname{add} D V=\operatorname{add} P$. In particular, $D f$ is a surjective map. Applying $\operatorname{Hom}_{A}(V, D-) \otimes_{C} V$ yields the following diagram with exact rows

Hence Φ_{X} is surjective because $D f \circ \Phi_{X_{0}}$ is. Conversely, assume that Φ_{X} is an epimorphism.
Observe that $\operatorname{Hom}_{C}(V, M)$ is an A-projective (A, R)-injective left module for any finitely generated left C-module M being (C, R)-injective and R-projective. In fact, $\operatorname{Hom}_{C}(V, D C) \simeq \operatorname{Hom}_{R}\left(C \otimes_{C} V, R\right) \simeq D V$ is an A-projective (A, R)-injective left module. Moreover, every (A, R)-injective R-projective module belongs to $\operatorname{add}_{C} D C$, so $\operatorname{Hom}_{C}(V, M) \in A-\operatorname{proj} \cap \operatorname{add}_{A} D A$.

Consider a C-projective presentation $P_{0} \xrightarrow{g} \operatorname{Hom}_{A}(V, D X) \rightarrow 0$. The functor $-\otimes_{C} V$ is right exact, so $g \otimes_{C} \mathrm{id}_{V}$ is surjective. So, $\Phi_{X} \circ g \otimes_{C} \mathrm{id}_{V}: P_{0} \otimes_{C} V \rightarrow D X$ is surjective, by assumption. As $X \in R$-proj, $D X \in R$-proj and consequently, $\Phi_{X} \circ g \otimes_{C}$ id $_{V}$ is a right (A, R)-epimorphism. So, applying D yields an (A, R)-monomorphism $X \rightarrow D\left(P_{0} \otimes_{C} V\right) \simeq \operatorname{Hom}_{C}\left(V, D P_{0}\right)$. Hence domdim ${ }_{(A, R)} X \geq 1$.
(b). We can relate the maps Φ_{X} and α_{X} using the following commutative diagram

Here w_{X} denotes the natural transformation from the identity to the double dual functor. As $X \in R$-proj and $\operatorname{Hom}_{A}(V, D X) \in R$-proj w_{X} and $w_{\operatorname{Hom}_{A}(V, D X)}$ are isomorphisms. The isomorphism $\iota_{V, D X}$ and $\kappa_{V, \operatorname{Hom}_{A}(V, D X)}$ are according to Proposition 2.1.

The diagram 34 is commutative because

$$
\begin{align*}
& D \Phi_{X} \circ w_{X}(x)(f \otimes v)=w_{X}(x) \circ \Phi_{X}(f \otimes v)=w_{X}(x)(f(v)) \tag{35}\\
& D\left(w_{\operatorname{Hom}_{A}(V, D X)} \otimes_{C} \operatorname{id}_{V}\right) \circ \kappa_{V, D} \operatorname{Hom}_{A}(V, D X) \circ \operatorname{Hom}_{C}\left(V, \iota_{V, D X}\right) \circ \operatorname{Hom}_{C}\left(V, V \otimes_{A} w_{X}\right) \circ \alpha_{X}(x)(f \otimes v)= \tag{36}\\
& =\kappa_{V, D \operatorname{Hom}_{A}(V, D X)}\left(\iota_{V, D X} \circ V \otimes_{A} w_{X} \circ \alpha_{X}(x)\right) \circ w_{\operatorname{Hom}_{A}(V, D X)} \otimes_{C} \operatorname{id}_{V}(f \otimes v)= \tag{37}\\
& =w_{\operatorname{Hom}_{A}(V, D X)}(f)\left(\iota_{V, D X} \circ V \otimes_{A} w_{X} \circ \alpha_{X}(x)(v)\right)=w_{\operatorname{Hom}_{A}(V, D X)}(f)\left(\iota_{V, D X}\left(v \otimes w_{X}(x)\right)\right)= \tag{38}\\
& =\iota_{V, D X}\left(v \otimes w_{X}(x)\right)(f)=w_{X}(x)(f(v)), x \in X, f \otimes v \in \operatorname{Hom}_{A}(V, D X) \otimes_{C} V . \tag{39}
\end{align*}
$$

Assume that domdim ${ }_{(A, R)} X \geq 1$. Then, by $(a) \Phi_{X}$ is an (A, R)-epimorphism. Thus, $D \Phi_{X}$ is an (A, R)-monomorphism. By diagram (34), α_{X} is an (A, R)-monomorphism. Assume now that α_{X} is an (A, R)-monomorphism and $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in R$-proj. Then, $D \alpha_{X}$ is an (A, R)-epi. Applying D to (34), we deduce that $D D \Phi_{X}$ is surjective. Because of $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in R$-proj $w_{\operatorname{Hom}_{A}(V, D X) \otimes_{C} V}$ is an isomorphism. Thus, $w_{D X} \circ \Phi_{X}=D D \Phi_{X} \circ w_{H^{\prime} m_{A}(V, D X) \otimes_{C} V}$ is surjective. Since $D X \in R$-proj, Φ_{X} is surjective. By (a), $\operatorname{domdim}_{(A, R)} X \geq 1$.

The assertions (c) and (d) are analogous to (a) and (b), respectively.
(e). Assume that (i) holds. By definition, there exists an (A, R)-exact sequence $0 \rightarrow X \xrightarrow{\varepsilon_{0}} P_{0} \xrightarrow{\varepsilon_{1}} P_{1}$ with $P_{0}, P_{1} \in$ add P. Applying D yields the exact sequence

$$
\begin{equation*}
D P_{1} \xrightarrow{D \varepsilon_{1}} D P_{0} \xrightarrow{D \varepsilon_{0}} X \rightarrow 0 \tag{40}
\end{equation*}
$$

The functor $\operatorname{Hom}_{A}(V,-) \otimes_{C} V$ is right exact, hence applying $\operatorname{Hom}_{A}(V,-) \otimes_{C} V$ to 40 yields the following commutative diagram with exact rows

By Lemma 3.21, $\Phi_{P_{0}}, \Phi_{P_{1}}$ are isomorphisms. By diagram chasing we deduce that Φ_{X} is an isomorphism. So, (ii) holds.

Assume that (ii) holds. Φ_{X} induces the isomorphism as R-modules $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \simeq D X \in$ R-proj. In particular, $D \Phi_{X}$ is an isomorphism. Using diagram (34), we deduce that α_{X} is an isomorphism. Thus, (iii) follows. Now consider a C-projective resolution for $\operatorname{Hom}_{A}(V, D X), P_{1} \rightarrow P_{0} \rightarrow$ $\operatorname{Hom}_{A}(V, D X) \rightarrow 0$. Applying $-\otimes_{C} V$ we obtain the exact sequence

$$
\begin{equation*}
P_{1} \otimes_{C} V \rightarrow P_{0} \otimes_{C} V \rightarrow \operatorname{Hom}_{A}(V, D X) \otimes_{C} V \rightarrow 0 \tag{41}
\end{equation*}
$$

Since Φ_{X} and $X \in R$-proj is an isomorphism this yields an (A, R)-exact sequence

$$
\begin{equation*}
P_{1} \otimes_{C} V \rightarrow P_{0} \otimes_{C} V \rightarrow D X \rightarrow 0 \tag{42}
\end{equation*}
$$

Finally, applying D yields an (A, R)-exact sequence $0 \rightarrow X \rightarrow D\left(P_{0} \otimes_{C} V\right) \rightarrow D\left(P_{1} \otimes_{C} V\right)$. As we have seen $D\left(P_{i} \otimes_{C} V\right) \in A$-proj $\cap a d d D A, i=1$, 2 , therefore $\operatorname{domdim}_{(A, R)} X \geq 2$. So, (i) holds.

Assume that (iii) holds. By diagram (34), $D \Phi_{X}$ is an isomorphism. Since $\operatorname{Hom}_{A}(V, D X) \otimes_{C} V \in$ R-proj $w_{\operatorname{Hom}_{A}(V, D X) \otimes_{C} V}$ is an isomorphism. So, $w_{D X} \circ \Phi_{X}=D D \Phi_{X} \circ w_{\operatorname{Hom}_{A}(V, D X) \otimes_{C} V}$ is an isomorphism. Thus, (ii) follows.

The argument for (f) is analogous to (e).
Here we can see that for a commutative ring, a module having relative dominant dimension at least two is equivalent to a stronger type of the double centralizer property $D V \otimes_{C} V \simeq D A$, which over fields is exactly the double centralizer property $\operatorname{End}_{C}(V)^{o p} \simeq A$.

This situation rises the question: in which situations can the R-module $D V \otimes_{C} V$ be at least R projective? The following lemma answers this question for RQF3 algebras with left or right relative dominant dimension greater or equal than two.

The next result is a consequence of the following lemma.
Lemma 3.24. Let D be a projective Noetherian R-algebra. Let X be a left D-progenerator and $E=$ $\operatorname{End}_{D}(X)^{o p}$. Consider the equivalence functors $F=\operatorname{Hom}_{D}(X,-): D-\bmod \rightarrow E-\bmod$ and $G=\operatorname{Hom}_{D}\left(\operatorname{Hom}_{D}(X, D),-\right): \bmod -D \rightarrow \bmod -E$. Then, for any $M \in \bmod -D, N \in D-\bmod , \operatorname{add}{ }_{R}\left(M \otimes_{D}\right.$ $N)=\operatorname{add}_{R}\left(G M \otimes_{E} F N\right)$.

Proof. By Morita theory,

$$
\begin{align*}
G M \otimes_{E} F N & \simeq \operatorname{Hom}_{D}\left(\operatorname{Hom}_{D}(X, D), M\right) \otimes_{E} \operatorname{Hom}_{D}(X, N) \simeq M \otimes_{D} \operatorname{Hom}_{D}\left(\operatorname{Hom}_{D}(X, M), D\right) \otimes_{E} \operatorname{Hom}_{D}(X, D) \otimes_{D} N \\
& \simeq M \otimes_{D} X \otimes_{E} \operatorname{Hom}_{D}(X, D) \otimes_{D} N \simeq M \otimes_{D} X \otimes_{E} \operatorname{Hom}_{E}(X, E) \otimes_{D} N \tag{43}\\
& \simeq M \otimes_{D} \operatorname{Hom}_{E}(X, X) \otimes_{D} N \simeq M \otimes_{D} D \otimes_{D} N \simeq M \otimes_{D} N .
\end{align*}
$$

Lemma 3.25. Let (A, P, V) be a RQF3 algebra. Denote $C=\operatorname{End}_{A}(V), B=\operatorname{End}_{A}(P)^{o p}$.
If $\operatorname{domdim}_{(A, R)} A \geq 2$ or $\operatorname{domdim}_{(A, R)} A_{A} \geq 2$, then $D V \otimes_{C} V \in R$-proj and $P \otimes_{B} D P \in R$-proj.
Proof. By Lemma 3.21 (b), $C \simeq \operatorname{End}_{B}\left(D\left(V \otimes_{A} P\right)\right.$) with $D\left(V \otimes_{A} P\right)$ a left B-progenerator. Thus, $F=\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right),-\right)$ and $G=\operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), B\right),-\right)$. Note that by Lemma 3.19(a),

$$
\begin{align*}
F D P & =\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), D P\right) \simeq \operatorname{Hom}_{B}\left(P, V \otimes_{A} P\right) \simeq V \tag{44}\\
G P & \simeq \operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), B\right), D D P\right) \simeq \operatorname{Hom}_{R}\left(\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), B\right) \otimes_{B} D P, R\right) \tag{45}\\
& \simeq D \operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), D P\right) \simeq D \operatorname{Hom}_{B}\left(P, V \otimes_{A} P\right) \simeq D V \tag{46}
\end{align*}
$$

The last isomorphism follows from Lemma 3.19. Consequently,

$$
\operatorname{add}_{R}\left(P \otimes_{B} D P\right)=\operatorname{add}_{R}\left(G P \otimes_{C} F D P\right)=\operatorname{add}_{R}\left(D V \otimes_{C} V\right)
$$

If domdim $(A, R)_{A} A \geq 2$, then according to Proposition 3.23 (e),

$$
\begin{equation*}
D V \otimes_{C} V \simeq \operatorname{Hom}_{A}(V, D A) \otimes_{C} V \simeq D A \in R \text {-proj } \tag{47}
\end{equation*}
$$

If domdim $(A, R) A_{A} \geq 2$, then according to Proposition 3.23 (f),

$$
P \otimes_{B} D P \simeq P \otimes_{B} \operatorname{Hom}_{A}(P, D A) \simeq D A \in R \text {-proj }
$$

4 Relative Morita-Tachikawa correspondence

For finite dimensional algebras the Morita-Tachikawa correspondence states that every finite dimensional algebra with dominant dimension greater or equal to two is the endomorphism algebra of a generatorcogenerator. In this integral situation, there are two situations worth distinguishing. The case where the ground ring is a regular Noetherian ring with Krull dimension one (Theorem 4.3) and the general case where we do not look at the Krull dimension of the ground ring. We will present in the following the relative version of this statement now for projective Noetherian R-algebras where R is a commutative Noetherian ring (not necessarily regular).

Theorem 4.1 (General case). Let R be a commutative Noetherian ring. There is a bijection:

In this notation, $A \sim_{2} A^{\prime}$ if and only if A and A^{\prime} are isomorphic, whereas, $(B, M) \sim_{1}\left(B^{\prime}, M^{\prime}\right)$ if and only if there is an equivalence of categories $F: B-\bmod \rightarrow B^{\prime}$-mod such that $M^{\prime}=F M$.

$$
\begin{aligned}
(B, M) & \mapsto A=\operatorname{End}_{B}(M)^{o p} \\
\left(\operatorname{End}_{A}(N), N\right) & \hookrightarrow A
\end{aligned}
$$

where N is an A-projective (A, R)-injective-strongly faithful right module.
Proof. It is immediate that \sim_{1} is an equivalence relation. Let A be a projective Noetherian R-algebra with right and left relative dominant dimension greater or equal than two. Hence, by definition, there exists $P \in A$-mod $\cap R$-proj and $V \in \bmod -A \cap R$-proj such that (A, P, V) is a RQF3 algebra. Let $B=\operatorname{End}_{A}(V)$. Since V is an A-projective right module B is a projective Noetherian R-algebra. Since R is Noetherian, it follows that B is Noetherian. By Lemma 3.21 (d), V is a left B-generator (B, R)-cogenerator and R-projective. By Lemma 3.25, $D V \otimes_{B} V \in R$-proj. Furthermore, by Proposition 3.23, there holds the double centralizer property $A \simeq \operatorname{End}_{B}(V)^{o p}$. If there exists another pair $\left(P^{\prime}, V^{\prime}\right)$ such that $\left(A, P^{\prime}, V^{\prime}\right)$ is RQF3, then we deduce by Lemma $3.7 \operatorname{thatadd}_{A} V=\operatorname{add}_{A} V^{\prime}$. So, $\left(\operatorname{End}_{A}\left(V^{\prime}\right), V^{\prime}\right) \sim_{1}(B, V)$.

Conversely, let (B, M) be a pair such that B is a projective Noetherian R-algebra and M is a B generator (B, R)-cogenerator satisfying $M, D M \otimes_{B} M \in R$-proj. Define $A=\operatorname{End}_{B}(M)^{o p}$. Since $D M \otimes_{R}$ M, it follows that $A=\operatorname{Hom}_{B}(M, M) \simeq D\left(D M \otimes_{B} M\right) \in R$-proj. Thus, A is a projective Noetherian R-algebra. As M is a B-generator $M^{t} \simeq B \oplus K$. In particular, there exists a surjective B-homomorphism $\phi: M^{t} \rightarrow B$ for some $t>0$. Let $\pi_{j} \in \operatorname{Hom}_{B}\left(M^{t}, M\right)$ and $k_{j} \in \operatorname{Hom}_{B}\left(M, M^{t}\right), 1 \leq j \leq t$, be the canonical surjections and injections, respectively. In particular, $1_{B}=\sum_{j} \phi \circ k_{j}\left(m_{j}\right)$ for some $m_{j} \in M, 1 \leq j \leq t$.

For any $x \in M$, define $h_{x} \in \operatorname{Hom}_{B}(B, M)$ satisfying $h_{x}\left(1_{B}\right)=x$. Then, $t_{x} \circ \phi \circ k_{j} \in \operatorname{Hom}_{B}(M, M)=A$, $1 \leq j \leq t$. Then, for any $x \in M$,

$$
\begin{equation*}
x=t_{x}\left(1_{B}\right)=t_{x}\left(\sum_{j} \phi \circ k_{j}\left(m_{j}\right)\right)=\sum_{j} t_{x} \circ \phi \circ k_{j}\left(m_{j}\right)=\sum_{j} m_{j} \cdot t_{x} \circ \phi \circ k_{j} . \tag{48}
\end{equation*}
$$

This shows that M is finitely generated as right A-module.
As a result of M being a B-generator, we can write

$$
\begin{align*}
A^{t} & \simeq \operatorname{Hom}_{B}\left(M, M_{A}\right)^{t} \simeq \operatorname{Hom}_{B}\left(M^{t}, M_{A}\right) \simeq \operatorname{Hom}_{B}\left(B \oplus K, M_{A}\right) \simeq \operatorname{Hom}_{B}\left(B, M_{A}\right) \oplus \operatorname{Hom}_{B}\left(K, M_{A}\right) \\
& \simeq M \oplus \operatorname{Hom}_{B}\left(K, M_{A}\right) \tag{49}
\end{align*}
$$

Hence, M is projective as right A-module. On the other hand, as M is a (B, R)-cogenerator, we can write

$$
\begin{align*}
A^{s} & \simeq \operatorname{Hom}_{B}\left(M_{A}, M\right)^{s} \simeq \operatorname{Hom}_{B}\left(M_{A}, M^{s}\right) \simeq \operatorname{Hom}_{B}\left(M_{A}, D B \oplus K^{\prime}\right) \simeq \operatorname{Hom}_{B}\left(M_{A}, D B\right) \oplus \operatorname{Hom}_{B}\left(M, K^{\prime}\right) \\
& \simeq \operatorname{Hom}_{B}(B, D M) \oplus \operatorname{Hom}_{B}\left(M, K^{\prime}\right) \simeq D M \oplus \operatorname{Hom}_{B}\left(M, K^{\prime}\right) \tag{50}
\end{align*}
$$

for some $s>0$ and $K^{\prime} \in B$-mod. Therefore, $D M$ is an A-projective left module, and consequently, M is an (A, R)-injective right module. Hence, M is an A-projective (A, R)-injective right module. Consider a left B-projective resolution for $M, P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$. Due to $D M \otimes_{B} M \in R$-proj applying $D M \otimes_{B}-$ yields the (A, R)-exact sequence

$$
\begin{equation*}
D M \otimes_{B} P_{1} \rightarrow D M \otimes_{B} P_{0} \rightarrow D M \otimes_{B} M \rightarrow 0 \tag{51}
\end{equation*}
$$

Now applying D yields the right (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow D\left(D M \otimes_{B} P_{0}\right) \rightarrow D\left(D M \otimes_{A} P_{1}\right) \tag{52}
\end{equation*}
$$

Observe that $D\left(D M \otimes_{B} P_{i}\right) \simeq \operatorname{Hom}_{B}\left(P_{i}, M\right) \in \operatorname{add} M, i=1,2$. Hence the (A, R)-monomorphism $A \rightarrow D\left(D M \otimes_{B} P_{0}\right)$ makes M an (A, R)-strongly faithful module and 52 implies $\operatorname{domdim}_{(A, R)} A_{A} \geq 2$. Consider now a right B-projective resolution for $D M, Q_{1} \rightarrow Q_{0} \rightarrow D M \rightarrow 0$. Applying $-\otimes_{B} M$ yields the (A, R)-exact sequence

$$
\begin{equation*}
Q_{1} \otimes_{B} M \rightarrow Q_{0} \otimes_{B} M \rightarrow D M \otimes_{B} M \rightarrow 0 \tag{53}
\end{equation*}
$$

Applying D we obtain the (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow D\left(Q_{0} \otimes_{B} M\right) \rightarrow D\left(Q_{1} \otimes_{B} M\right) \tag{54}
\end{equation*}
$$

Here $D\left(Q_{i} \otimes_{B} M\right) \simeq \operatorname{Hom}_{B}\left(Q_{i}, D M\right) \in \operatorname{add} D M$. Therefore, (54) yields that $\operatorname{domdim}_{(A, R)} A \geq 2$ and $D M$ is an (A, R)-strongly faithful module.

As generators satisfy the double centralizer property we have that $B \simeq \operatorname{End}_{A}(M)$. If $(B, M) \simeq_{1}$ $\left(B^{\prime}, M^{\prime}\right)$, then by Morita theory, $A=\operatorname{End}_{B}(M)^{o p} \simeq \operatorname{End}_{B^{\prime}}\left(M^{\prime}\right)$. This concludes the proof.

We should emphasize the importance of R being a commutative Noetherian ring in the proof of the relative Morita-Tachikawa correspondence. Furthermore, we remark that using finitely generated modules in Definition 3.1 of relative dominant dimension instead of general modules is no mistake. One of the reasons is that the Hom functors do not preserve in general arbitrary direct sums. Consequently, the techniques employed in relative Morita-Tachikawa correspondence would not hold in such a general setting.

Moreover, the following result is a consequence of equation 48. This result goes back to Mor58.
Corollary 4.2. Let B be a projective Noetherian R-algebra. Let M be a generator in B-Mod. Then, M is finitely generated as $\operatorname{End}_{B}(M)^{o p}$-module.

Therefore, it is not expected that a version of Morita-Tachikawa correspondence can hold in general for arbitrary commutative non-Noetherian rings. Nonetheless, if such version happens to exist it should involve at very least compact modules in order to solve the problems of Hom regarding direct sums.

The surprise in this relative version is that we are only interested in the generators relative cogenerators that satisfy $D M \otimes_{B} M \in R$-proj. Modules are faithful over its endomorphism algebras. The importance of the property $D M \otimes_{B} M \in R$-proj lies on the fact that this is a sufficient condition for a given B-module M to be strongly faithful over its endomorphism algebra. Later, we will see a characterization of this property and what it means for the endomorphism algebra $\operatorname{End}_{B}(M)$ in terms of base change properties.

4.1 Relative Morita-Tachikawa correspondence in case of Krull dimension one

For regular commutative Noetherian rings with Krull dimension less or equal to one, we can drop the condition $D M \otimes_{B} M \in R$-proj in the relative Morita-Tachikawa correspondence and we can reformulate the relative Morita-Tachikawa correspondence in the following way.

Theorem 4.3. Let R be a commutative regular Noetherian ring with Krull dimension less than or equal to one. There is a bijection between

$$
\left\{(B, M): \begin{array}{c}
B \text { a projective Noetherian } \\
R \text {-algebra, } M \in R \text {-proj } \\
M a B \text {-generator }(B, R) \text {-cogenerator }
\end{array}\right\} / \sim_{1} \longleftrightarrow\left\{\begin{array}{c}
A: \begin{array}{c}
\operatorname{domdim}_{(A, R)} A \geq 1, \\
\operatorname{domdim}_{(A, R)} A_{A} \geq 1, \\
\text { all }(A, R) \text {-injective-strongly faithful } \\
\text { projective modules } \\
\text { satisfy the }
\end{array} \\
\text { double centralizer property }
\end{array}\right\} / \sim_{2}
$$

In this notation, $A \sim_{2} A^{\prime}$ if and only if A and A^{\prime} are isomorphic, whereas, $(B, M) \sim_{1}\left(B^{\prime}, M^{\prime}\right)$ if and only if there is an equivalence of categories $F: B-\bmod \rightarrow B^{\prime}-\bmod$ such that $M^{\prime}=F M$.

$$
\begin{aligned}
(B, M) & \mapsto A=\operatorname{End}_{B}(M)^{o p} \\
\left(\operatorname{End}_{A}(N), N\right) & \hookrightarrow A
\end{aligned}
$$

where N is an A-projective (A, R)-injective-strongly faithful right module.
Proof. Let A be a projective Noetherian R-algebra with $\operatorname{domdim}_{(A, R)} A_{A} \geq 1, \operatorname{domdim}_{(A, R)} A \geq 1$ and all projective (A, R)-injective-strongly faithful modules satisfy the double centralizer property. Hence, there exists $P \in A-\bmod$ and $V \in \bmod -A$ such that (A, P, V) is a RQF3 algebra. Define $B=\operatorname{End}_{A}(V)$. As V is an A-projective right module, B is a projective Noetherian R-algebra. By Lemma $3.21, V$ is a left B-generator (B, R)-cogenerator. By assumption, V satisfies the double centralizer property, thus $A \simeq \operatorname{End}_{B}(V)^{o p}$. By the same argument as in relative Morita-Tachikawa correspondence, the mapping \leftarrow is well defined.

Conversely, let (B, M) with $M \in B$-mod $\cap R$-proj a B-generator (B, R)-cogenerator. Define $A=$ $\operatorname{End}_{B}(M)^{o p}$. Note that $A=\operatorname{Hom}_{B}(M, M) \subset \operatorname{Hom}_{R}(M, M) \in \operatorname{add}_{R} M$. Since R has Krull dimension less or equal than one, and A is an R-submodule of a projective then A is projective as R-module. Thus, A is a projective Noetherian R-algebra. As in the proof of Theorem 4.1, M is an A-projective (A, R)-injective finitely generated module that satisfies the double centralizer property. Consider a projective resolution for $M, P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$. Applying $D M \otimes_{B}$ - we get the exact sequence

$$
\begin{equation*}
D M \otimes_{B} P_{1} \rightarrow D M \otimes_{B} P_{0} \rightarrow D M \otimes_{B} M \rightarrow 0 \tag{55}
\end{equation*}
$$

Now, applying D yields the following commutative diagram

By Snake Lemma, the map coker $\rightarrow D\left(D M \otimes_{B} P_{1}\right) \simeq \operatorname{Hom}_{B}\left(P_{1}, M\right)$ is a monomorphism and $\operatorname{Hom}_{B}\left(P_{1}, M\right) \in$ add M. As $\operatorname{dim} R \leq 1$, coker $\in R$-proj. Thus, the monomorphism $A \rightarrow D\left(D M \otimes_{B} P_{0}\right)$ is an (A, R) monomorphism. It follows that $\operatorname{dom} \operatorname{dim}(A, R) A_{A} \geq 1$. Using a projective resolution for $D M$ and applying $D \circ-\otimes_{B} M$ we deduce that $\operatorname{dom} \operatorname{dim}(A, R)_{A} A \geq 1$. In particular, $(A, D M, M)$ is a RQF3 algebra and there exists an A-exact sequence $0 \rightarrow A \rightarrow X_{0} \rightarrow X_{1}$, with $X_{0}, X_{1} \in$ add $D M$. Now assume that T is another right projective (A, R)-injective-strongly faithful module. Then, $(A, D M, T)$ is a RQF3 algebra. By Lemma 3.21 (a), $\operatorname{add}_{A} M=\operatorname{add}_{A} T$. Denote by C the endomorphism algebra $\operatorname{End}_{A}(T)$. By Morita theory, $(C, T) \sim_{1}(B, M)$. Hence, $A \simeq \operatorname{End}_{B}(M)^{o p} \simeq \operatorname{End}_{C}(T)^{o p}$. So, all T satisfies the double centralizer property between C and A.

As we will see in Corollary 6.6, in the right hand side of Theorem 4.3 it is enough to consider only the dominant dimension of the regular left module or only the dominant dimension of the regular right module.

4.2 Splitting map between endomorphism algebras

In general, we know very little about the splitness over R of the natural inclusion

$$
\begin{equation*}
\operatorname{End}_{C}(V) \rightarrow \operatorname{End}_{R}(V) \tag{56}
\end{equation*}
$$

even in the case where V is a left C-generator. A relation between this property and relative dominant dimension can be found in the next proposition.

Proposition 4.4. Let (A, P, V) be a RQF3 algebra. Fix $C=\operatorname{End}_{A}(V)$. The following assertions hold.
(a) If $\operatorname{domdim}(A, R) \geq 2$, then the canonical inclusion

$$
\begin{equation*}
i: \operatorname{End}_{C}(V) \hookrightarrow \operatorname{End}_{R}(V) \tag{57}
\end{equation*}
$$

splits over R.
(b) Assume also that the splitting map $\tau: \operatorname{End}_{R}(V) \rightarrow \operatorname{End}_{C}(V)$ satisfies the following two properties:

$$
\begin{equation*}
\tau(h \circ g)=h \circ \tau(g), \quad \tau(g \circ h)=\tau(g) \circ h, g \in \operatorname{End}_{R}(V), h \in \operatorname{End}_{C}(V) \tag{58}
\end{equation*}
$$

Let $\delta: M_{i+1} \rightarrow M_{i} \rightarrow M_{i-1}$ be a (C, R)-exact sequence. If $\operatorname{Hom}_{C}\left(V, M_{i+1}\right) \rightarrow \operatorname{Hom}_{C}\left(V, M_{i}\right) \rightarrow$ $\operatorname{Hom}_{C}\left(V, M_{i-1}\right)$ is exact and $M_{i} \in R$-proj, then the sequence $\operatorname{Hom}_{C}(V, \delta)$ is (A, R)-exact.

Proof. By Proposition 3.23, $\Phi_{A}: D V \otimes_{C} V \rightarrow D A$ is an isomorphism. In particular, $D V \otimes_{C} V \in R$-proj. Consider the canonical R-epimorphism $\varepsilon: D V \otimes_{R} V \rightarrow D V \otimes_{C} V$, given by $f \otimes v \mapsto f \otimes v, f \in D V, v \in V$. So, ε splits over R. Using the commutativity of the diagram with bijective columns

we obtain that the natural inclusion i splits over R.
Assume that the splitting map $\tau: \operatorname{End}_{R}(V) \rightarrow \operatorname{End}_{C}(V)$ satisfies the following two properties:

$$
\begin{equation*}
\tau(h \circ g)=h \circ \tau(g), \quad \tau(g \circ h)=\tau(g) \circ h, g \in \operatorname{End}_{R}(V), h \in \operatorname{End}_{C}(V) \tag{59}
\end{equation*}
$$

Let $M_{i+1} \xrightarrow{f_{i+1}} M_{i} \xrightarrow{f_{i}} M_{i-1}$ be a (C, R)-exact sequence. Hence, there are maps $h_{j} \in \operatorname{Hom}_{R}\left(M_{j}, M_{j+1}\right)$ satisfying $f_{i+1} \circ h_{i}+h_{i-1} \circ f_{i}=\operatorname{id}_{M_{i}}, j=i, i-1$.

Since V is C-generator there exists a surjective $\pi^{(i)}: V^{t_{i}} \rightarrow M_{i}$. As $M_{i} \in R$-proj, there exists $k^{(i)} \in \operatorname{Hom}_{R}\left(M_{i}, V^{t_{i}}\right)$ such that $\pi^{(i)} \circ k^{(i)}=\operatorname{id}_{M_{i}}$. Let $\pi_{j}^{(i)}$ and $k_{j}^{(i)}$ be the canonical surjections and inclusions of the direct sum $V^{t_{i}}$. Since V is a (C, R)-cogenerator, M_{i} can be embedded in V^{s} through a $\operatorname{map} l^{(i)}$. Denote by ϕ_{z} and ν_{z} the canonical projections and injections of the direct sum V^{s}. Define the $\operatorname{map} H_{i}: \operatorname{Hom}_{C}\left(V, M_{i}\right) \rightarrow \operatorname{Hom}_{C}\left(V, M_{i+1}\right)$, given by $H_{i}(g)=\sum_{j} \pi^{(i+1)} k_{j}^{(i+1)} \tau\left(\pi_{j}^{(i+1)} k^{(i+1)} h_{i} g\right)$ for each $g \in \operatorname{Hom}_{C}\left(V, M_{i}\right)$. For any $g \in \operatorname{Hom}_{C}\left(V, M_{i}\right)$,

$$
\begin{align*}
& l^{(i)}\left(\operatorname{Hom}_{C}\left(V, f_{i+1} \circ H_{i}+H_{i-1} \circ \operatorname{Hom}_{C}\left(V, f_{i}\right)\right)\right)(g)=l^{(i)}\left(f_{i+1} \circ H_{i}(g)+H_{i-1}\left(f_{i} \circ g\right)\right) \tag{60}\\
& \quad=\sum_{z, j} \nu_{z}\left(\phi_{z} l^{(i)} f_{i+1} \pi^{(i+1)} k_{j}^{(i+1)} \tau\left(\pi_{j}^{(i+1)} k^{(i+1)} h_{i} g\right)+\phi_{z} l^{(i)} \pi^{(i)} k_{j}^{(i)} \tau\left(\pi_{j}^{(i)} k^{(i)} h_{i-1} f_{i} g\right)\right) \tag{61}\\
& =\sum_{z} \nu_{z}\left(\tau\left(\phi_{z} l^{(i)} f_{i+1} \pi^{(i+1)} \sum_{j} k_{j}^{(i+1)} \pi_{j}^{(i+1)} h_{i} g\right)+\tau\left(\phi_{z} l^{(i)} \pi^{(i)} \sum_{j} k_{j}^{(i)} \pi_{j}^{(i)} k^{(i)} h_{i-1} f_{i} g\right)\right) \tag{62}\\
& \quad=\sum_{z} \nu_{z} \tau\left(\phi_{z} l^{(i)} f_{i+1} h_{i} g+\phi_{z} l^{(i)} h_{i-1} f_{i} g\right)=\sum_{z} \nu_{z} \tau\left(\phi_{z} l^{(i)} g\right)=\sum_{z} \nu_{z} \phi_{z} l^{(i)} g=l^{(i)} g . \tag{63}
\end{align*}
$$

Therefore, $\operatorname{Hom}_{C}\left(V, f_{i+1} \circ H_{i}+H_{i-1} \circ \operatorname{Hom}_{C}\left(V, f_{i}\right)=\operatorname{id}_{\operatorname{Hom}_{C}\left(V, M_{i}\right)}\right.$. Analogously, we can see the same statement holds for the functor $\operatorname{Hom}_{C}(-, V)$.

The existence of a map τ in the conditions of Proposition 4.4(b) may not exist in general, otherwise, every module should satisfy the property $\operatorname{Hom}_{A}(V, D M) \otimes_{C} V \in R$-proj. However, such a map τ with the given properties exists for relative separable algebras (see for example [Hat63, 2.2]).

5 Mueller's characterization of relative dominant dimension

We will now study how to compute the relative dominant dimension of a module in terms of the homology over the endomorphism algebra of a projective relative injective strongly faithful module (Theorem 5.2). This will be the analogue of Mueller's characterization of dominant dimension. It turns out that in the integral setup, vanishing of cohomology is weaker than vanishing of homology. Actually, we will see that it is the global dimension of the ground ring which causes obstructions suggesting the use of Tor functors instead of Ext functors to study relative dominant dimension (Theorem 5.2, Proposition 5.5 and Theorem 5.6). In general, without further assumptions, the larger the global dimension of the ground ring, the less vanishing of Ext groups tell us about the value of relative dominant dimension of a module. Similarly to the classical case, thanks to the Mueller's characterization of relative dominant dimension we can deduce several additional properties of relative dominant dimension. For instance, we can establish the left and right symmetry of relative dominant dimension of relative QF-3 algebras (Corollary 5.9) and how relative dominant dimension behaves on short (A, R)-exact sequences (Lemma 5.12).

The following technical lemma will be useful for the relative Mueller theorem.
Lemma 5.1. Consider the following commutative diagram with one exact row

The following assertions hold.
(i) If ε is surjective and $\varepsilon \circ \alpha_{0}=0$, then t is mono.
(ii) If t is mono and $\alpha_{2} \circ t=0$, then ε is surjective.

Proof. (i). Let $y \in \operatorname{ker} t$. Since ε is surjective, we can write $y=\varepsilon(x)$ for some $x \in X_{1}$. Thus, $\alpha_{1}(x)=t \varepsilon(x)=t(y)=0$. So, $x \in \operatorname{im} \alpha_{0}=\operatorname{ker} \alpha_{1}$. Hence, $y=\varepsilon\left(\alpha_{0}(z)\right)=0$ for some $z \in X_{0}$. Hence, t is injective.
(ii). Let $y \in Y$. Then, $t(y) \in \operatorname{ker} \alpha_{2}=\operatorname{im} \alpha_{1}$. So, we can write $t(y)=\alpha_{1}(x)=t \varepsilon(x)$ for some $x \in X_{1}$. As t is injective, $y=\varepsilon(x)$.

Let $X \in A$-mod. Denote by $\Omega^{i}\left(X, P^{\bullet}\right)$ the i-th syzygy of X with respect to an A-projective resolution P^{\bullet}. Naturally, $\Omega^{0}\left(X, P^{\bullet}\right) \simeq X$ for any P^{\bullet} and $\Omega^{i}\left(X, P^{\bullet}\right) \in R$-proj whenever $X \in R$-proj.
Theorem 5.2. Let (A, P, V) be a RQF3 algebra. Fix $C=\operatorname{End}_{A}(V)$. For any R-projective left A-module M, the following assertions are equivalent.
(i) $\operatorname{domdim}_{(A, R)} M \geq n \geq 2$;
(ii) $\Phi_{M}: \operatorname{Hom}_{A}(V, D M) \otimes_{C} V \rightarrow D M$ is an isomorphism and $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0,1 \leq i \leq n-2$;
(iii) $\alpha_{M}: M \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right)$ is an isomorphism, $\Omega^{i}\left(\operatorname{Hom}_{A}(V, D M), P^{\bullet}\right) \otimes_{C} V \in R$-proj, $0 \leq i \leq n-2$ for every C-projective resolution P^{\bullet} of $\operatorname{Hom}_{A}(V, D M)$ and $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-2$.

Proof. $(i) \Longrightarrow(i i)$. By Proposition $3.23, \Phi_{M}$ is an isomorphism. By definition, there exists an $(A, R)-$ exact sequence

$$
\begin{equation*}
0 \rightarrow M \xrightarrow{\varepsilon} X_{0} \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \cdots \rightarrow X_{n-1} \tag{64}
\end{equation*}
$$

with X_{i} an A-projective (A, R)-injective module. The functor $\operatorname{Hom}_{A}(V,-)$ is exact, and since D preserves (A, R)-exact sequences, applying $\operatorname{Hom}_{A}(V, D-)$ yields the exact sequence
$\operatorname{Hom}_{A}\left(V, D X_{n-1}\right) \xrightarrow{\operatorname{Hom}_{A}\left(V, D f_{n-1}\right)} \operatorname{Hom}_{A}\left(V, D X_{n-2}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(V, D X_{0}\right) \xrightarrow{\operatorname{Hom}_{A}(V, D \varepsilon)} \operatorname{Hom}_{A}(V, D M) \rightarrow 0$.

As $\operatorname{Hom}_{A}\left(V, D X_{i}\right) \in \operatorname{add} \operatorname{Hom}_{A}(V, V)=C$-proj, we can extend 65) to a C-projective resolution of $\operatorname{Hom}_{A}(V, D M), P^{\bullet}$ where $P_{i}=\operatorname{Hom}_{A}\left(V, D X_{i}\right), 0 \leq i \leq n-1$. Applying $-\otimes_{C} V$ we get the following commutative diagram with the top row exact.

According to Lemma 3.21 , the maps Φ_{M} and $\Phi_{X_{i}}, i=1, \ldots, n-1$ are isomorphisms. Thus, the bottom row is exact. Thus,

$$
\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=\operatorname{ker}_{\operatorname{Hom}_{A}}\left(V, D f_{i}\right) \otimes_{C} V / \operatorname{im}_{\operatorname{Hom}_{A}}\left(V, D f_{i+1}\right) \otimes_{C} V=0, \quad 1 \leq i \leq n-2
$$

$(i i) \Longrightarrow(i i i)$. By Proposition 3.23 . $\operatorname{Hom}_{A}(V, D M) \otimes_{C} V \simeq D\left(V \otimes_{A} M\right) \otimes_{C} V \in R$-proj and α_{M} is an isomorphism. Let

$$
\begin{equation*}
\cdots \rightarrow P_{2} \xrightarrow{p_{2}} P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} D\left(V \otimes_{A} M\right) \rightarrow 0 \tag{66}
\end{equation*}
$$

be an arbitrary C-projective resolution of $D\left(V \otimes_{A} M\right)$. In particular, for every $1 \leq i \leq n-2$, we have the following exact sequence

$$
\begin{equation*}
0 \rightarrow \Omega^{i}\left(\operatorname{Hom}_{A}(V, D M), P^{\bullet}\right) \xrightarrow{k_{i}} P_{i-1} \xrightarrow{p_{i-1}} P_{i-2} \rightarrow \cdots \rightarrow P_{0} \rightarrow D\left(V \otimes_{A} M\right) \rightarrow 0 \tag{67}
\end{equation*}
$$

where P^{\bullet} is the deleted projective resolution of 66). It follows from $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$, $1 \leq i \leq n-2$ the existence of the following exact sequence and factorization of $p_{i} \otimes_{C} V$

$$
\begin{align*}
& P_{n-1} \otimes_{C} V \tag{68}\\
& P_{i+1} \otimes_{C} V \\
& p_{i+1} \otimes_{C} V \\
& p_{i} \otimes_{C} V \\
& p_{C} V P_{n-2} \otimes_{C} V \rightarrow \cdots \rightarrow P_{0} \otimes_{C} V \rightarrow D\left(V \otimes_{A} M\right) \otimes_{C} V \rightarrow 0, \\
& \Omega_{\varepsilon_{i}\left(\otimes_{C} V\right.}\left.\operatorname{Hom}_{A-1}(V, D M), P_{C} \otimes^{p_{i}}\right) \otimes_{C} V
\end{align*}
$$

where ε_{i} is the map given in the factorization (epi, mono) $k_{i} \varepsilon_{i}=p_{i}$. For the case $i=1$, we can take $P_{-1}=D\left(V \otimes_{A} M\right)$. Observe that $0=p_{i} p_{i+1}=k_{i} \varepsilon_{i} p_{i+1}$. Hence, $\varepsilon_{i} p_{i+1}=0$ because k_{i} is a mono. Consequently, $\varepsilon_{i} \otimes_{C} V p_{i+1} \otimes_{C} V=0$. By Lemma 5.1, $k_{i} \otimes_{C} V$ is a monomorphism and thus

$$
\begin{equation*}
\Omega^{i}\left(\operatorname{Hom}_{A}(V, D M), P^{\bullet}\right) \otimes_{C} V \simeq \operatorname{im}\left(p_{i} \otimes_{C} V\right)=\operatorname{ker}\left(p_{i-1} \otimes_{C} V\right) \in R-\text { proj } \tag{69}
\end{equation*}
$$

since $D\left(V \otimes_{A} M\right) \otimes_{C} V \in R$-proj and every $P_{i} \in R$-proj. By Tensor-Hom adjunction there exists the following commutative diagram

such that every column is an isomorphism. The upper row is just the exact sequence obtained by applying D to the (A, R)-exact sequence (68), and therefore it is exact. Now, the commutativity of diagram (70) yields that the bottom row of 70 is exact. Taking into account that $0 \rightarrow V \otimes_{A} M \rightarrow D P_{0} \rightarrow D P_{1} \rightarrow \cdots$ is a (C, R)-injective resolution and $V \otimes_{A} M \in R$-proj, the exactness of the bottom row of 70) means that $\operatorname{Ext}_{(C, R)}^{i}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-2$. Again, since $V \otimes_{A} M \in R$-proj and $V \in R$-proj the standard (C, R)-projective resolution of V is a C-projective resolution of V. Therefore,

$$
\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=\operatorname{Ext}_{(C, R)}^{i}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-2 .
$$

(iii) \Longrightarrow (i). We shall proceed by induction on k to show that if $\alpha_{M}: M \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right)$ is an isomorphism, $\Omega^{i}\left(\operatorname{Hom}_{A}(V, D M), P^{\bullet}\right) \otimes_{C} V \in R$-proj, $0 \leq i \leq k-2$ for every C-projective resolution P^{\bullet} of $\operatorname{Hom}_{A}(V, D M)$ and $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=0$ for $1 \leq i \leq k-2$, then $\operatorname{domdim}_{(A, R)} M \geq k \geq 2$. If $k=2$, then the result holds by Proposition 3.23. Assume that the result holds for a given k satisfying $n>k>2$. Assume, in addition, that $\alpha_{M}: M \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right)$ is an isomorphism, $\Omega^{i}\left(\operatorname{Hom}_{A}(V, D M), P^{\bullet}\right) \otimes_{C}$ $V \in R$-proj, $0 \leq i \leq k-1$ for every C-projective resolution P^{\bullet} of $\operatorname{Hom}_{A}(V, D M)$ and $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=$ $0,1 \leq i \leq k-1$. By induction, $\operatorname{domdim}_{(A, R)} M \geq k$. So, there exists a (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow M \xrightarrow{\alpha_{0}} X_{0} \xrightarrow{\alpha_{1}} X_{1} \rightarrow \cdots \rightarrow X_{k-1} \tag{71}
\end{equation*}
$$

with all $X_{i} \in$ add $D V$. Applying $V \otimes_{A}-$ yields the (C, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow V \otimes_{A} M \rightarrow V \otimes_{A} X_{0} \rightarrow V \otimes_{A} X_{1} \rightarrow \cdots \rightarrow V \otimes_{A} X_{k-1} \tag{72}
\end{equation*}
$$

Now, observe that, $D\left(V \otimes_{A} X_{i}\right) \simeq \operatorname{Hom}_{A}\left(V, D X_{i}\right) \in \operatorname{add}_{H_{A}}(V, D D V)=C$-proj. So, we can extend (72) to a (C, R)-injective resolution of $V \otimes_{A} M, I^{\bullet}$. Furthermore, we have the (epi, mono) factorization

where $\left(V \otimes_{A} X\right)^{\bullet}$ denotes the deleted (C, R)-injective resolution obtained by I^{\bullet}. Denote by Ω the module $D \Omega^{k-1}\left(D\left(V \otimes_{A} M\right), D\left(\left(V \otimes_{A} X\right) \bullet\right)\right.$ Since $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=\operatorname{Ext}_{(C, R)}^{i}\left(V, V \otimes_{A} M\right)=0, i \leq k-1$ applying $\operatorname{Hom}_{C}(V,-)$ to the (C, R)-injective I^{\bullet} we obtain the exact sequence

$$
\begin{align*}
& \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right) \hookrightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} \stackrel{\operatorname{Hom}_{C}\left(V, V \otimes_{A} \alpha_{k-1}\right)}{X_{k-2}}\right) \xrightarrow{\operatorname{Hom}_{C}}\left(V, V \otimes_{A} X_{k-1}\right) \stackrel{\operatorname{Hom}_{C}\left(V, i_{k}\right)}{\operatorname{Hom}_{C}}\left(V, I_{k}\right) \\
& \operatorname{Hom}_{C}(V, \varepsilon) \downarrow \underbrace{}_{\operatorname{Hom}_{C}(V, t)} \\
& \operatorname{Hom}_{C}(V, \Omega) \tag{73}
\end{align*}
$$

where $\operatorname{Hom}_{C}(V, t)$ is injective and $\operatorname{ker} i_{k}=\operatorname{im} V \otimes_{A} \alpha_{k-1}$. Note that $0=i_{k} \circ V \otimes_{A} \alpha_{k-1}=i_{k} t \varepsilon$. Thus, $i_{k} t=0$ since ε is surjective. Now, as $\operatorname{Hom}_{C}\left(V, i_{k}\right) \circ \operatorname{Hom}_{C}(V, t)=\operatorname{Hom}_{C}\left(V, i_{k} t\right)=0$, it follows by Lemma 5.1(ii) that $\operatorname{Hom}_{C}(V, \varepsilon)$ is surjective. On the other hand,

$$
\begin{equation*}
\operatorname{Hom}_{C}(V, \Omega) \simeq D\left(\Omega^{k-1}\left(D\left(V \otimes_{A} M\right), D\left(\left(V \otimes_{A} X\right)^{\bullet}\right) \otimes_{C} V\right) \in R\right. \text {-proj } \tag{74}
\end{equation*}
$$

Hence, the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right) \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{k-2}\right) \rightarrow \operatorname{Hom}_{C}(V, \Omega) \rightarrow 0 \tag{75}
\end{equation*}
$$

is (A, R)-exact. As $M \simeq \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right)$ and each $\operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{i}\right) \simeq X_{i} \in \operatorname{add} D V$ it is enough to show that $\operatorname{Hom}_{C}(V, \Omega)$ has relative dominant dimension greater or equal than two. In such a case, there exists $Y_{0}, Y_{1} \in$ add $D V$ and an (A, R)-exact sequence $0 \rightarrow \operatorname{Hom}_{C}(V, \Omega) \rightarrow Y_{0} \rightarrow Y_{1}$. Combining this (A, R)-exact sequence with 75 we obtain an (A, R)-exact sequence

$$
0 \rightarrow M \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{k-2}\right) \rightarrow Y_{0} \rightarrow Y_{1}
$$

This would imply that $\operatorname{domdim}_{(A, R)} M \geq k+1$.
We can see that by Lemma 3.17 and by assumption on the R-projectivity of the $k-1$ syzygy that

$$
\begin{align*}
\operatorname{Hom}_{A}\left(V, D \operatorname{Hom}_{C}(V, \Omega)\right) \otimes_{C} V & \left.\simeq D\left(V \otimes_{A} \operatorname{Hom}_{C}(V, \Omega)\right) \otimes_{C} V\right) \simeq D(\Omega) \otimes_{C} V \tag{76}\\
& \simeq \Omega^{k-1}\left(D\left(V \otimes_{A} M\right), D\left(\left(V \otimes_{A} X\right)^{\bullet}\right) \otimes_{C} V \in R\right. \text {-proj } \tag{77}
\end{align*}
$$

By Lemma 3.17 the map ξ_{Ω} is an isomorphism. Moreover,

$$
\begin{equation*}
\operatorname{Hom}_{C}\left(V, \xi_{\Omega}\right) \circ \alpha_{\operatorname{Hom}_{C}(V, \Omega)}(f)(v)=\xi_{\Omega}(v \otimes f)=f(v), f \in \operatorname{Hom}_{C}(V, \Omega), v \in V \tag{78}
\end{equation*}
$$

Thus, $\operatorname{Hom}_{C}\left(V, \xi_{\Omega}\right) \circ \alpha_{\operatorname{Hom}_{C}(V, \Omega)}=\operatorname{id}_{\operatorname{Hom}_{C}(V, \Omega)}$. It follows that $\alpha_{\operatorname{Hom}_{C}(V, \Omega)}$ is an isomorphism. By Proposition $3.23 \operatorname{domdim}_{(A, R)} \operatorname{Hom}_{C}(V, \Omega) \geq 2$.

Theorem 5.3. Let (A, P, V) be a RQF3 algebra. Denote $B=\operatorname{End}_{A}(P)^{o p}$. For any R-projective right A-module M, the following assertions are equivalent.
(a) $\operatorname{domim}_{(A, R)} M \geq n \geq 2$;
(b) $\delta_{M}: P \otimes_{B} \operatorname{Hom}_{A}(P, D M) \rightarrow D M$ is an isomorphism and $\operatorname{Tor}_{i}^{B}\left(P, \operatorname{Hom}_{A}(P, D M)\right)=0,1 \leq i \leq n-2$;
(c) $\alpha_{M}: M \rightarrow \operatorname{Hom}_{B}\left(P, M \otimes_{A} P\right)$ is an isomorphism, $P \otimes_{B} \Omega^{i}\left(\operatorname{Hom}_{A}(P, D M), Q^{\bullet}\right) \in R$-proj, $0 \leq i \leq n-2$ for every left B-projective resolution Q^{\bullet} of $\operatorname{Hom}_{A}(P, D M)$ and $\operatorname{Ext}_{B}^{i}\left(P, M \otimes_{A} P\right)=0,1 \leq i \leq n-2$.

Proof. The proof is analogous to Theorem 5.2 .
Remark 5.4. By Observation 3.22 we can deduce as in Theorem 5.2 that the existence of an (A, R)-exact sequence

$$
\begin{equation*}
Y_{n} \rightarrow Y_{n-1} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y \rightarrow 0 \tag{79}
\end{equation*}
$$

where $Y_{i} \in \operatorname{Add}_{A} V, 1 \leq i \leq n$, for a given $Y \in \operatorname{Mod}-A$, is equivalent to requiring $\Phi: \operatorname{Hom}_{A}(V, Y) \otimes_{C} V \rightarrow Y$ to be an isomorphism and $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, Y), V\right)=0,1 \leq i \leq n-2$.

Comparing this version with the Mueller theorem for Artinian algebras, we can see that the functors Tor take a more important role than Ext. Furthermore, condition (c) does not seem very practical to use in applications since we have to test every syzygy of a projective resolution of $\operatorname{Hom}_{A}(V, D M)$. However, using Ext can still be useful if we know the Krull dimension of the ground ring. Recall that for commutative Noetherian regular rings (by definition the localization at every prime ideal is a regular local ring) the Krull dimension coincides with the global dimension (see for example Rot09, Theorem 8.62, Proposition 8.60]).

Proposition 5.5. Let R be a commutative Noetherian regular ring. Let (A, P, V) be a $R Q F 3$ algebra. Fix $C=\operatorname{End}_{A}(V)$ and $B=\operatorname{End}_{A}(P)^{o p}$. Let $n \geq 2, M \in A-\bmod \cap R$-proj, and $N \in \bmod -A \cap R$-proj. The following assertions hold.
(i) If $\alpha_{M}: M \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right)$ is an isomorphism and $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=0$ for every $1 \leq i \leq n-2$, then $\operatorname{domdim}_{(A, R)} M \geq n-\operatorname{dim} R$.
(ii) If $\alpha_{N}: N \rightarrow \operatorname{Hom}_{B}\left(P, N \otimes_{A} P\right)$ is an isomorphism and $\operatorname{Ext}_{B}^{i}\left(P, N \otimes_{A} P\right)=0$ for every $1 \leq i \leq n-2$, then $\operatorname{domdim}_{(A, R)} N \geq n-\operatorname{dim} R$.

Proof. If $\operatorname{dim} R \geq n$, then there is nothing to prove. Assume that $n>\operatorname{dim} R$. Let $j=n-\operatorname{dim} R$. Let

$$
\begin{equation*}
0 \rightarrow V \otimes_{A} M \xrightarrow{\alpha_{0}} Y_{0} \xrightarrow{\alpha_{1}} Y_{1} \rightarrow \cdots \tag{80}
\end{equation*}
$$

be a (C, R)-injective resolution of $V \otimes_{A} M$. The modules Y_{i} can be chosen to be R-projective as well. Since $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-2$, applying $\operatorname{Hom}_{C}(V,-)$ yields the exact sequence

$$
\begin{equation*}
0 \rightarrow M \simeq \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right) \xrightarrow{\operatorname{Hom}_{C}\left(V, \alpha_{0}\right)} \operatorname{Hom}_{C}\left(V, Y_{0}\right) \xrightarrow{\operatorname{Hom}_{C}\left(V, \alpha_{1}\right)} \cdots \rightarrow \operatorname{Hom}_{C}\left(V, Y_{n-1}\right) \tag{81}
\end{equation*}
$$

Note that $\operatorname{Hom}_{C}\left(V, Y_{i}\right) \in \operatorname{add} \operatorname{Hom}_{C}(V, D C)=\operatorname{add} D V=\operatorname{add} P$. Let $C_{i}=\operatorname{im} \operatorname{Hom}_{C}\left(V, \alpha_{i}\right), \forall i$. The exact sequence (81) induces the exact sequence

$$
\begin{equation*}
0 \rightarrow C_{j} \rightarrow \operatorname{Hom}_{C}\left(V, Y_{j}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, Y_{n-2}\right) \rightarrow C_{n-1} \rightarrow 0 \tag{82}
\end{equation*}
$$

Note that this sequence has length $\operatorname{dim} R+1$. Furthermore, since $\operatorname{pdim}_{R} C_{n-1} \leq \operatorname{dim} R$, we must have that C_{j} is R-projective. This implies that the exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow \operatorname{Hom}_{C}\left(V, Y_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, Y_{j-1}\right) \tag{83}
\end{equation*}
$$

is (A, R)-exact. Therefore, it follows that $\operatorname{domim}_{(A, R)} M \geq j=n-\operatorname{dim} R$. (ii) is analogous to (i).
When the Krull dimension is at most one, we can formulate the Mueller theorem in the following way.
Theorem 5.6. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Let (A, P, V) be a RQF3 algebra. Denote $C=\operatorname{End}_{A}(V)$. Let $M \in A-\bmod \cap R$-proj and $n \geq 2$. The following assertions are equivalent.
(i) $\operatorname{domdim}_{(A, R)} M \geq n-1$ where the (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \tag{84}
\end{equation*}
$$

X_{i} an (A, R)-injective A-projective module, can be continued to an exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow Y \tag{85}
\end{equation*}
$$

where Y is (A, R)-injective A-projective.
(ii) α_{M} is an isomorphism and $\operatorname{Ext}_{C}^{i}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-2$.

Proof. Assume that (ii) holds. Using Proposition 5.5, we see that $\operatorname{domdim}_{(A, R)} M \geq n-1$. Moreover, using the (A, R)-exact constructed there we have

$$
\begin{equation*}
0 \rightarrow M \rightarrow \operatorname{Hom}_{C}\left(V, Y_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, Y_{n-2}\right) \rightarrow C_{n-1} \rightarrow 0 \tag{86}
\end{equation*}
$$

Since C_{n-1} can be embedded into $\operatorname{Hom}_{C}\left(V, Y_{n-1}\right)$ (i) follows.
Conversely, assume that (i) holds. Since $n \geq 2$, there exists an exact sequence $0 \rightarrow M \rightarrow X_{1} \rightarrow X_{2}$ where $X_{i} \in$ add $D V$. The functor $\operatorname{Hom}_{C}\left(V, V \otimes_{A}-\right)$ is left exact, so it yields the following commutative diagram with exact rows

By diagram chasing, it follows that α_{M} is an isomorphism. Applying $V \otimes_{A}-$ to 85 we obtain the exact sequence

$$
\begin{equation*}
0 \rightarrow V \otimes_{A} M \rightarrow V \otimes_{A} X_{1} \rightarrow \cdots \rightarrow V \otimes_{A} X_{n-1} \rightarrow V \otimes_{A} Y \tag{88}
\end{equation*}
$$

Note that by deleting $V \otimes_{A} Y$ we obtain a (C, R)-exact sequence. We can continue such (C, R)-exact to a (C, R)-injective resolution of $V \otimes_{A} M$. Now consider the following commutative diagram

It follows that the bottom row is exact. In particular, $\operatorname{Ext}_{(C, R)}\left(V, V \otimes_{A} M\right)=0,1 \leq i \leq n-3$. Notice that by continuing the (C, R)-injective resolution we have the following commutative diagram

Since $\operatorname{Hom}_{C}(V,-)$ is left exact,

$$
\begin{equation*}
\operatorname{ker} \operatorname{Hom}_{C}(V, \nu \circ \varepsilon)=\operatorname{ker} \operatorname{Hom}_{C}(V, \varepsilon)=\operatorname{ker} \operatorname{Hom}_{C}(V, t \circ \varepsilon)=\operatorname{im}_{C} \operatorname{Hom}_{C}\left(V, \lambda_{n-1}\right) \tag{91}
\end{equation*}
$$

This last equality follows from the exactness of 89). This means that

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} M\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{C}\left(V, V \otimes_{A} X_{n-1}\right) \rightarrow \operatorname{Hom}_{C}\left(V, \tilde{X}_{n}\right) \tag{92}
\end{equation*}
$$

is exact. So, (ii) holds.

This method gives a hint why for Krull dimension one we can say that by continuing an (A, R)-exact sequence of projective relative injectives to a non- (A, R)-exact sequence of projective relative injectives is still enough to recover information about Ext. The method here used requires that at each step to compute the exact sequence we might have to replace the projective (A, R)-injective. This happens in general because we do not have a standard choice here unless the algebra is semiperfect. In such a case, the projective covers can take that role.

Proposition 5.7. Let A be a semi-perfect R-algebra and a projective Noetherian R-algebra. Let $M \in$ A-mod $\cap R$-proj. Let

$$
\begin{equation*}
\cdots \rightarrow P_{1} \xrightarrow{p_{1}} P_{0} \xrightarrow{p_{0}} D M \rightarrow 0 \tag{93}
\end{equation*}
$$

be a minimal right A-projective resolution. Then, $\operatorname{domdim}_{(A, R)} M \geq n$ if and only if for each $i=0, \ldots, n-1$, P_{i} is (A, R)-injective right module.

Proof. One of the implications is clear. Assume that $\operatorname{domdim}_{(A, R)} M \geq n$. Then, there exists an $(A, R)-$ exact sequence $0 \rightarrow M \xrightarrow{\alpha_{0}} I_{0} \rightarrow \cdots \xrightarrow{\alpha_{n-1}} I_{n-1}$, with all I_{i} being A-projective (A, R)-injective. Hence applying D we obtain an exact sequence $D I_{n-1} \xrightarrow{D \alpha_{n-1}} \cdots \rightarrow D I_{0} \xrightarrow{D \alpha_{0}} D M \rightarrow 0$. Since P_{0} and $D I_{0}$ are A-projective there are maps $f_{0} \in \operatorname{Hom}_{A}\left(P_{0}, D I_{0}\right), g_{0} \in \operatorname{Hom}_{A}\left(D I_{0}, P_{0}\right)$ satisfying $p_{0} \circ g_{0}=D \alpha_{0}$ and $D \alpha_{0} \circ f_{0}=p_{0}$. Hence, $p_{0} \circ g_{0} \circ f_{0}=p_{0}$. Since $\left(P_{0}, p_{0}\right)$ is the projective cover of $D M$, it follows that $g_{0} \circ f_{0} \in \operatorname{End}_{A}\left(P_{0}\right)$ is an isomorphism. Consequently, g_{0} is surjective and thus, P_{0} is an A-summand of $D I_{0}$. In particular, P_{0} is (A, R)-injective. Observe that $p_{0} \circ g_{0} \circ D \alpha_{1}=D \alpha_{0} \circ D \alpha_{1}=0$. Hence, $\operatorname{im} g_{0} \circ D \alpha_{1} \subset \operatorname{ker} p_{0}$. Let $x \in \operatorname{ker} p_{0}=$. Then, by the surjectivity of g_{0}, there exists $y \in D I_{0}$ such that $g_{0}(y)=x$. Therefore, $D \alpha_{0}(y)=p_{0}(x)=0$. Thus, $y \in \operatorname{ker} D \alpha_{0}=\operatorname{im} D \alpha_{1}$. So, $x \in \operatorname{im} g_{0} \circ D \alpha_{1}$. We deduced that the sequence $D I_{n-1} \rightarrow \cdots \rightarrow D I_{1} \xrightarrow{g \circ D \alpha_{1}} P_{0} \xrightarrow{p_{0}} D M \rightarrow 0$ is exact. Now we can proceed by induction, where in the next step ker p_{0} takes the place of $D M$, to obtain that each P_{i} is an A-summand of $D I_{i}$.

To clarify, if A is not semi-perfect there is no canonical (A, R)-injective resolution to pick for a module to compute its relative dominant dimension. For example, looking at the standard (A, R) injective resolution gives us no information here because if $M \in A$ - $\bmod \cap R$-proj has positive relative dominant dimension and if it is free as R-module, then $D A \in \operatorname{add} \operatorname{Hom}_{R}(A, M)=\operatorname{add} D A \otimes_{R} M$. Hence, the first term of the standard (A, R)-injective resolution of $M I_{0}:=\operatorname{Hom}_{R}(A, M)$ cannot be projective over A.

5.1 Further consequences

We shall now see some properties of relative dominant dimension that follow from the relative Mueller theorem. In particular, the relative Mueller characterization applied to A takes the following form. This result is the relative analogue of Mue68, Lemma 3] and Tac73, 7.5].

Theorem 5.8. Let A be an $(A, P, V) R Q F 3$ algebra with $\operatorname{domdim}_{(A, R)} A \geq 2$ and $\operatorname{domdim}_{(A, R)} A_{A} \geq 2$. For $n \geq 3$, the following are equivalent.
(i) $\operatorname{domdim}_{(A, R)} A \geq n$;
(ii) $\operatorname{Tor}_{i}^{C}(D V, V)=0, i=1, \ldots, n-2$;
(iii) $\operatorname{Ext}_{C}^{i}(V, V)=0, i=1, \ldots, n-2$ and $\Omega^{j}\left(D V, Q^{\bullet}\right) \otimes_{C} V \in R$-proj, $0 \leq j \leq n-2$, for every C-projective resolution Q^{\bullet} of $D V$;
(iv) $\operatorname{Tor}_{i}^{B}(P, D P)=0 i=1, \ldots, n-2$;
(v) $\operatorname{Ext}_{C}^{i}(P, P)=0, i=1, \ldots, n-2$ and $P \otimes_{B} \Omega^{j}\left(D P, Q^{\bullet}\right) \in R$-proj, $0 \leq j \leq n-2$, for every B-projective resolution Q^{\bullet} of $D P$;
(vi) $\operatorname{domdim}_{(A, R)} A_{A} \geq n$.

Proof. The implications $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ and $(i v) \Leftrightarrow(v) \Leftrightarrow(v i)$ follow from Theorem 5.2 and Theorem 5.3. respectively. We will, therefore, focus on the implication $(i i) \Leftrightarrow(i v)$.

Consider a left B-projective resolution

$$
\begin{equation*}
\cdots \rightarrow P_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} D P \rightarrow 0 \tag{94}
\end{equation*}
$$

Applying the exact functor $\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right),-\right)$ we get the exact sequence

$$
\begin{equation*}
\cdots \rightarrow \operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), P_{n-1}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), P_{0}\right) \rightarrow \operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), D P\right) \rightarrow 0 \tag{95}
\end{equation*}
$$

Since $D\left(V \otimes_{A} P\right)$ is a B-generator, each $P_{i} \in \operatorname{add} D\left(V \otimes_{A} P\right)$, therefore $\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), P_{i}\right) \in C$-proj. Also, $\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), D P\right) \simeq \operatorname{Hom}_{B}\left(P, V \otimes_{A} P\right) \simeq V$ as left C-modules. Thus, (95) is a C-projective resolution for V.

We recall that in Lemma 3.25, we saw that for

$$
F=\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right),-\right) \text { and } G=\operatorname{Hom}_{B}\left(\operatorname{Hom}_{B}\left(D\left(V \otimes_{A} P\right), B\right),-\right)
$$

there was an isomorphism $G M \otimes_{C} F N \simeq M \otimes_{B} N$ for every $M \in \bmod -B$ and $N \in B$-mod. Since all the isomorphisms involved are functorial, it follows that there exists a natural isomorphism of bifunctors $\theta: G(-) \otimes_{C} F(-) \rightarrow \mathrm{id}(-) \otimes_{B} \mathrm{id}(-)$. In particular, the following diagram is commutative

So, the upper row is exact if and only if the bottom row is exact. Furthermore, the bottom row is exactly the complex obtained by applying $D V \otimes_{C}$ - to the exact sequence 95 . It follows that $\operatorname{Tor}_{i}^{C}(D V, V)=0$ if and only if $\operatorname{Tor}_{i}^{B}(P, D P)=0$.

Corollary 5.9. Let (A, P, V) be a $R Q F 3$ algebra. Then, $\operatorname{domdim}_{(A, R)} A=\operatorname{domdim}_{(A, R)} A_{A}$.
Proof. Assume that $\operatorname{domdim}_{(A, R)} A \geq 2$. By Lemma $3.21, V$ is a left C-generator (C, R)-cogenerator. In view of Lemma 3.25, $D V \otimes_{C} V \in R$-proj. By Theorem5.2, V satisfies the double centralizer property. By Morita-Tachikawa correspondence $\operatorname{End}_{C}(V) \simeq A$ has left and right relative dominant dimension greater or equal than two. By Theorem 5.8. we have $\operatorname{domdim}_{(A, R)} A_{A} \geq \operatorname{domdim}_{(A, R) A} A$. Symmetrically, $\operatorname{domdim}_{(A, R)} A \geq \operatorname{domdim}_{(A, R)} A_{A}$.

Another consequence of Theorem 5.8 is that we can characterize every endomorphism algebra of a generator relative cogenerator such that the generator remains R-projective under tensor product over its dual. In fact, Let B be the endomorphism algebra over A of a generator (A, R)-cogenerator such that $D M \otimes_{A} M \in R$-proj. By relative Morita-Tachikawa, B has left and right relative dominant dimension greater or equal than two. Now Theorem 5.8 gives that $\operatorname{domdim}(B, R) \geq n+2$ if and only if $\operatorname{Tor}_{i}^{A}(D M, M)=0,1 \leq i \leq n$.
Corollary 5.10. Let (A, P, V) be a RQF3 algebra. Let $M_{i} \in A-\bmod \cap R$-proj, $i \in I$, for some finite set I. Then,

$$
\begin{equation*}
\operatorname{domdim}_{(A, R)}\left(\bigoplus_{i \in I} M_{i}\right)=\inf \left\{\operatorname{domdim}_{(A, R)} M_{i}: i \in I\right\} \tag{97}
\end{equation*}
$$

Proof. Since the maps Φ_{X} are compatible with direct sums, we get that $\Phi_{M_{i}}$ is surjective/bijective for every $i \in I$ if and only if $\Phi_{\oplus_{i \in I}}$ is surjective/bijective. Thus, $\operatorname{domdim}_{(A, R)} \bigoplus_{i \in I} M_{i} \geq 1$ (resp. 2) if and only if domdim ${ }_{(A, R)} M_{i} \geq 1$ (resp. 2) for every $i \in I$. Now since for every n

$$
\begin{equation*}
\operatorname{Tor}_{n}^{C}\left(\operatorname{Hom}_{A}\left(V, D\left(\bigoplus_{i \in I} M_{i}\right)\right), V\right) \simeq \operatorname{Tor}_{n}^{C}\left(\operatorname{Hom}_{A}\left(V, \bigoplus_{i \in I} D M_{i}\right), V\right) \simeq \bigoplus_{i \in I} \operatorname{Tor}_{n}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{i}\right), V\right) \tag{98}
\end{equation*}
$$

the result follows by Theorem 5.2 .
Remark 5.11. It follows that the value of the relative dominant dimension is independent of the direct sum decomposition of the module.

The following Lemma is another consequence of relative Mueller characterization. In the field case, this proof is quicker using the relations between dominant dimension and the socle of the regular module and it was first stated in FK11b, Proposition 3.6].

Lemma 5.12. Let (A, P, V) be a $R Q F 3$ algebra. Let $M \in R$-proj and consider the following (A, R)-exact

$$
\begin{equation*}
0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0 \tag{99}
\end{equation*}
$$

Let $n=\operatorname{domdim}_{(A, R)} M$ and $n_{i}=\operatorname{domdim}_{(A, R)} M_{i}$. Then, the following holds.
(a) $n \geq \min \left\{n_{1}, n_{2}\right\}$.
(b) If $n_{1}<n$, then $n_{2}=n_{1}-1$.
(c) (i) $n_{1}=n \Longrightarrow n_{2} \geq n-1$.
(ii) $n_{1}=n+1 \Longrightarrow n_{2} \geq n$.
(iii) $n_{1} \geq n+2 \Longrightarrow n_{2}=n$.
(d) $n<n_{2} \Longrightarrow n_{1}=n$.
(e) (i) $n=n_{2} \Longrightarrow n_{1} \geq n_{2}$.
(ii) $n=n_{2}+1 \Longrightarrow n_{1} \geq n_{2}+1$.
(iii) $n \geq n_{2}+2 \Longrightarrow n_{1}=n_{2}+1$.

Proof. Applying D and $\operatorname{Hom}_{A}(V, D-) \otimes_{C} V$ we get the commutative diagram with exact rows

By Snake Lemma, Φ_{M} is an epimorphism/isomorphism if $\Phi_{M_{1}}$ and $\Phi_{M_{2}}$ are epimorphisms/isomorphisms. Thus, $\min \left\{n_{1}, n_{2}\right\} \geq k, k \leq 2$, implies that $n \geq k$. Consider the long exact sequence

$$
\begin{equation*}
\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{1}\right), V\right) \rightarrow \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right) \rightarrow \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{2}\right), V\right) \tag{101}
\end{equation*}
$$

we obtain that if $n_{1}, n_{2} \geq k \geq 2, \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{1}\right), V\right)=\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{2}\right), V\right)=0$ for $i=$ $1, \ldots, k-2$, then $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$. Thus, $n \geq \min \left\{n_{1}, n_{2}\right\}$. By Theorem 5.2, (a) follows.
(b). If $n_{1}=0$, then $\Phi_{M_{1}}$ is not surjective. By diagram chasing, if Φ_{M} is surjective, then $\Phi_{M_{1}}$ is surjective. Thus, $n>0$ implies that $n_{1}>0$. Assume $n_{1}=1$ and $n>n_{1}$. Thus, Φ_{M} is bijective and $\Phi_{M_{1}}$ is surjective. If $\Phi_{M_{2}}$ is surjective, then by Snake Lemma, $\Phi_{M_{1}}$ is also injective. This would imply that $n_{1} \geq 2$. So, $n_{2}=0$. Assume now $n_{1} \geq 2$. By Snake Lemma, $\Phi_{M_{2}}$ is surjective. So, $n_{2} \geq 1$.

If $n_{2} \geq 2$, then, in particular, $\Phi_{M_{2}}$ is surjective. The exactness of the bottom row of 100 makes $\operatorname{Hom}_{A}\left(V, D M_{2}\right) \otimes_{C} V \rightarrow \operatorname{Hom}_{A}(V, D M) \otimes_{C} V$ injective. Since $\operatorname{Tor}_{1}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$, the long exact sequence induces that $\operatorname{Tor}_{1}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{1}\right), V\right)=0$. This contradicts $n_{1}=2$. Thus, $n_{2}=1$. Now assume that $n_{1} \geq 3$. Thus, 100 becomes

Thus, by Snake Lemma $\Phi_{M_{2}}$ is bijective. Furthermore, using the long exact sequences and as $n>n_{1}$ we deduce that

$$
\begin{equation*}
\operatorname{Tor}_{i+1}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{1}\right), V\right) \simeq \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D M_{2}\right), V\right), 1 \leq i \leq n_{1}-2 \tag{103}
\end{equation*}
$$

Thus, $n_{2}=n_{1}-1$.
Analogously, $(c),(d),(e)$ hold.

6 Relative dominant dimension under change of rings

In this section, we will see that relative dominant dimension is stable under change of rings. Furthermore, in practice, computations of relative dominant dimension of projective Noetherian algebras can be reduced to computations of dominant dimension of finite dimensional algebras over algebraically closed fields (Proposition 6.10 and Theorem 6.13). This is the interpretation of the main result of the current paper (Theorem 6.13). We can see using change of rings that projective relative injective strongly faithful modules are sharp generalizations of projective-injective faithful modules according to Proposition 6.4. Using this, we can conclude the left right symmetry of the relative dominant dimension of projective Noetherian algebras (Corollary 6.6). At this point, we also obtain a better picture of the relative MoritaTachikawa correspondence. The extra condition appearing on relative Morita-Tachikawa correspondence is a manifestation of the fact that the algebras on both sides of the correspondence must satisfy a base change property (Proposition 6.14). We will see using the main result that the Nakayama conjecture is equivalent to the relative Nakayama conjecture for projective Noetherian algebras (Theorem 6.17).

6.1 Strongly faithful modules revisited

The proofs of the following two lemmas are technical however they are very useful to characterize strongly faithful modules.
Lemma 6.1. Let A be a projective Noetherian R-algebra. Let $V \in \bmod -A \cap R$-proj. Consider the A-map $\delta_{V}: \quad \bigoplus \quad D V \rightarrow D A$, given by $\delta_{V}\left(f_{g}\right)=g(f)$, where $M_{g}:=D V$ for $g \in \operatorname{Hom}_{A}(D V, D A)$. For $g \in \operatorname{Hom}_{A}(D V, D A)$
each $f \in D V$ and $g \in \operatorname{Hom}_{A}(D V, D A), f_{g}$ denotes the function from $\operatorname{Hom}_{A}(D V, D A)$ to the disjoint union of all modules $M_{h}, h \in \operatorname{Hom}_{A}(D V, D A)$, so that $f_{g}(h)=0$ if $g \neq h$ and $f_{g}(g)=f$. Then, δ_{V} is surjective if and only if V is (A, R)-strongly faithful.
Proof. First, we need to check that δ_{V} is well defined. Let $g \in \operatorname{Hom}_{A}(D V, D A)$. Let $\theta_{g}: D V \rightarrow D A$ be the map given by $\theta_{g}(f)=g(f), f \in D V$. This is clearly an A-map since $g \in \operatorname{Hom}_{A}(D V, D A)$. Taking the direct sum of maps θ_{g} over $g \in \operatorname{Hom}_{A}(D V, D A)$ yields the map δ_{V}. Thus, δ_{V} is well defined.

Assume that δ_{V} is surjective. Let $\left\{f_{1}, \ldots, f_{t}\right\}$ be an R-generator set for $D A$. By assumption, there exists for each $1 \leq i \leq t$ a natural number $s_{i}>0$ and elements $w_{i, j} \in D V, g_{i, j} \in \operatorname{Hom}_{A}(D V, D A)$ with $j=1, \ldots, s_{i}$ such that

$$
\begin{equation*}
f_{i}=\delta_{V}\left(\sum_{j=1}^{s_{i}}\left(w_{i, j}\right)_{g_{i, j}}\right) \tag{104}
\end{equation*}
$$

Let $h \in D A$. Then,

$$
\begin{equation*}
h=\sum_{i=1}^{t} \alpha_{i} f_{i}=\sum_{i=1}^{t} \alpha_{i} \delta_{V}\left(\sum_{j=1}^{s_{i}}\left(w_{i, j}\right)_{g_{i, j}}\right)=\delta_{V}\left(\sum_{i=1}^{t} \sum_{j=1}^{s_{i}} \alpha_{i}\left(w_{i, j}\right)_{g_{i, j}}\right), \quad \alpha_{i} \in R . \tag{105}
\end{equation*}
$$

Therefore, the restriction of δ_{V} to the summands indexed by $g_{i, j} 1 \leq i \leq t, 1 \leq j \leq s_{i}$ is surjective. Denote by o the number of such indexes. Then, we found a surjective A-map $(D V)^{o} \rightarrow D A$. As $D A \in R$-proj, this map is an (A, R)-epimorphism. Thus, applying D yields an (A, R)-monomorphism $A \rightarrow V^{o}$. So, V is (A, R)-strongly faithful.

Conversely, assume that V is (A, R)-strongly faithful. Hence there is an (A, R)-monomorphism $A \rightarrow$ V^{t} for some $t>0$. Applying D we obtain a surjective map $D V^{t} \rightarrow D A$. Denote this map by ε. Let $k_{j} \in$ $\operatorname{Hom}_{A}\left(D V, D V^{t}\right)$ and $\pi_{j} \in \operatorname{Hom}_{A}\left(D V^{t}, D V\right)$ be the canonical injections and projections, respectively. Define $g_{j}=\varepsilon \circ k_{j} \in \operatorname{Hom}_{A}(D V, D A)$. For every $h \in D A$, there exists $y \in D V^{t}$ such that $\varepsilon(y)=h$. Therefore,

$$
\begin{equation*}
h=\sum_{j=1}^{t} \varepsilon \circ k_{j} \circ \pi_{j}(y)=\delta_{V}\left(\sum_{j=1}^{t} \pi_{j}(y)_{g_{j}}\right) . \tag{106}
\end{equation*}
$$

So, δ_{V} is surjective.
Lemma 6.2. Let A be a projective Noetherian R-algebra. For every commutative R-algebra S, and $X, Y \in A$-mod there exists a map

$$
\theta_{S}: S \bigotimes_{R} \bigoplus_{g \in \operatorname{Hom}_{A}(X, Y)} X \longrightarrow \bigoplus_{h \in \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} X, S \otimes_{R} Y\right)} S \otimes_{R} X
$$

given by $\theta_{S}\left(s \otimes x_{g}\right)=(s \otimes x)_{1_{S} \otimes g}$.
Moreover, if $X \in A$-proj, then $\theta_{R(\mathfrak{m})}$ is surjective for every maximal ideal \mathfrak{m} in R.
Proof. Consider the map

$$
\theta: S \times \bigoplus_{g \in \operatorname{Hom}_{A}(X, Y)} X \rightarrow \bigoplus_{h \in \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} X, S \otimes_{R} Y\right)} S \otimes_{R} X
$$

given by $\theta\left(s, x_{g}\right)=(s \otimes x)_{1_{s} \otimes g}$ for $s \in S, x \in X, g \in \operatorname{Hom}_{A}(X, Y)$. By definition, this map is linear in each term. Let $r \in R$. Then,

$$
\begin{equation*}
\theta\left(r s, x_{g}\right)=(r s \otimes x)_{1_{S} \otimes g}=(s \otimes r x)_{1_{S} \otimes g}=\theta\left(s,(r x)_{g}\right) \tag{107}
\end{equation*}
$$

So, θ induces uniquely the S-map θ_{S}. Assume that $X \in A$-proj. Let \mathfrak{m} be a maximal ideal in R. Then, $\operatorname{Hom}_{A(\mathfrak{m})}(X(\mathfrak{m}), Y(\mathfrak{m})) \simeq \operatorname{Hom}_{A}(X, Y)(\mathfrak{m})$. Thus, every element in $\operatorname{Hom}_{A(\mathfrak{m})}(X(\mathfrak{m}), Y(\mathfrak{m}))$ can be written in the form $h \otimes(r+m)=(r h) \otimes 1_{R(\mathfrak{m})}$ for $r h \in \operatorname{Hom}_{A}(X, Y)$. Moreover, every element in $\bigoplus_{h \in \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} X, S \otimes_{R} Y\right)} S \otimes_{R} X$ is the sum of elements $\left(1_{R(\mathfrak{m})} \otimes x\right)_{1_{R(\mathfrak{m})} \otimes h}=\theta_{R(\mathfrak{m})}\left(1_{R(\mathfrak{m})} \otimes x_{h}\right)$, $h \in \operatorname{Hom}_{A}(X, Y)$. This implies that $\theta_{R(\mathfrak{m})}$ is surjective.

Proposition 6.3. Let A be a projective Noetherian R-algebra. Let $V \in \bmod -A \cap R$-proj. Then, the following assertions are equivalent.
(a) V is an A-projective (A, R)-injective-strongly faithful right module.
(b) $S \otimes_{R} V$ is an $S \otimes_{R}$ A-projective $\left(S \otimes_{R} A, S\right)$-injective-strongly faithful right module for every commutative R-algebra S.
(c) $V_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$-projective $\left(A_{\mathfrak{m}}, R_{\mathfrak{m}}\right)$-injective-strongly faithful right module for every maximal ideal \mathfrak{m} in R.
(d) $V(\mathfrak{m})$ is right $A(\mathfrak{m})$-projective-injective faithful for every maximal ideal \mathfrak{m} in R.

Proof. (i) \Longrightarrow (ii). Let S be a commutative R-algebra. The module V is a right A-summand of A^{t} for some $t>0$. Hence $S \otimes_{R} V$ is a right $S \otimes_{R} A$-summand of $S \otimes_{R} A^{t} \simeq\left(S \otimes_{R} A\right)^{t}$. Thus, $S \otimes_{R} V$ is a right $S \otimes_{R} A$-projective module. As V is (A, R)-injective, V is an A-summand of $\operatorname{Hom}_{R}(A, V)$. So, $S \otimes_{R} V$ is an $S \otimes_{R} A$-summand of $S \otimes_{R} \operatorname{Hom}_{R}(A, V) \simeq \operatorname{Hom}_{S}\left(S \otimes_{R} A, S \otimes_{R} V\right)$ since $A \in R$-proj. Hence, $S \otimes_{R} V$ is a projective $\left(S \otimes_{R} A, S\right)$-injective. By Lemma 6.1. the map $\delta_{V} \in \operatorname{Hom}_{A}\left(\bigoplus_{g \in \operatorname{Hom}_{A}(D V, D A)} D V, D A\right)$ is surjective. Applying the functor $S \otimes_{R}$ - we have the following commutative diagram

where l_{S} and κ_{l} are the canonical isomorphisms (as $V, A \in R$-proj). This diagram is commutative since:

$$
\begin{array}{r}
\delta_{S \otimes_{R} V} \circ \kappa_{S} \circ \theta_{S}\left(s \otimes x_{g}\right)=\delta_{S \otimes_{R} V} \circ \kappa_{S}(s \otimes x)_{1_{S} \otimes g}=\delta_{S \otimes_{R} V}\left((s \otimes x)_{1_{s} \otimes g}\right)=1_{S} \otimes g(s \otimes x)=s \otimes g(x) \\
l_{S} \circ S \otimes_{R} \delta_{V}\left(s \otimes x_{g}\right)=l(s \otimes g(x))=s \otimes g(x), s \in S, x \in D V, g \in \operatorname{Hom}_{A}(D V, D A) .
\end{array}
$$

The right exactness of $S \otimes_{R}$-implies that $S \otimes_{R} \delta_{V}$ is surjective. Using the commutativity of the diagram $\delta_{S \otimes_{R} V} \circ \kappa_{S} \circ \theta_{S}$ is surjective. Hence, $\delta_{S \otimes_{R} V}$ is surjective. By Lemma 6.1, (ii) follows.
$(i i) \Longrightarrow(i i i)$. For every maximal ideal \mathfrak{m} in R, consider $S=R_{\mathfrak{m}}$.
$(i i i) \Longrightarrow(i v)$. Let \mathfrak{m} be a maximal ideal in R. Recall that

$$
\begin{equation*}
X_{\mathfrak{m}}(\mathfrak{m})=X_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}=X \otimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}=X \otimes_{R} R_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}=X(\mathfrak{m}) \tag{109}
\end{equation*}
$$

Hence, using the same argument as discussed in $(i) \Longrightarrow$ (ii) now with $S=R_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}$ yields that $V(\mathfrak{m})$ is $A(\mathfrak{m})$-projective $(A(\mathfrak{m}), R(\mathfrak{m}))$-injective-strongly faithful. Since $R(\mathfrak{m})$ is a field, every $(A(\mathfrak{m}), R(\mathfrak{m}))$ injective is $A(\mathfrak{m})$-injective and strongly faithful coincides with faithful. So, (iv) follows.
$(i v) \Longrightarrow(i)$. Since $V(\mathfrak{m})$ is an $A(\mathfrak{m})$-projective right module for every maximal ideal \mathfrak{m} in R and $V \in R$-proj, we deduce that V is an A-projective right module. By Theorem $2.12, V$ is (A, R)-injective. By Lemma 6.1, $\delta_{V(\mathfrak{m})}$ is surjective for every maximal ideal \mathfrak{m} in R. By Lemma 6.2, $\theta_{R(\mathfrak{m})}$ is surjective. By the commutative diagram 108 with $S=R(\mathfrak{m})$ we get that $l_{R(\mathfrak{m})} \circ R(\mathfrak{m}) \otimes_{R} \delta_{V}$ is surjective. Since $l_{R(\mathfrak{m})}$ is bijective, it follows that $R(\mathfrak{m}) \otimes_{R} \delta_{V}$ is surjective for every maximal ideal \mathfrak{m} in R. By Nakayama's Lemma, δ_{V} is surjective. So, V is also (A, R)-strongly faithful.

By symmetry one obtains:
Proposition 6.4. Let A be a projective Noetherian R-algebra. Let $P \in A$ - $\bmod \cap R$-proj. Then, the following assertions are equivalent.
(a) P is an A-projective (A, R)-injective-strongly faithful left module.
(b) $S \otimes_{R} P$ is an $S \otimes_{R} A$-projective $\left(S \otimes_{R} A, S\right)$-injective-strongly faithful left module for every commutative R-algebra S.
(c) $P_{\mathfrak{m}}$ is an $A_{\mathfrak{m}}$-projective $\left(A_{\mathfrak{m}}, R_{\mathfrak{m}}\right)$-injective-strongly faithful left module for every maximal ideal \mathfrak{m} in R.
(d) $P(\mathfrak{m})$ is left $A(\mathfrak{m})$-projective-injective faithful for every maximal ideal \mathfrak{m} in R.

6.2 Left-right symmetry of relative dominant dimension

For finite dimensional algebras there exists a left faithful projective-injective if and only if there exists a right faithful projective-injective Tac63, Theorem 2]. Although, we do not have an argument for (A, R) strongly faithfulness being preserved under standard duality, we can recover the following statement.

Lemma 6.5. Let A be a projective Noetherian R-algebra. Then, $\operatorname{domdim}_{(A, R)} A_{A} \geq 1$ if and only if $\operatorname{domdim}_{(A, R)} A \geq 1$. In particular, if $\operatorname{domdim}_{(A, R)} A \geq 1$ or $\operatorname{domdim}_{(A, R)} A_{A} \geq 1$, then there exist P and V such that (A, P, V) is a RQF3 algebra.

Proof. Assume that $\operatorname{domdim}_{(A, R)} A_{A} \geq 1$. Then, there exists a right A-module V which is A-projective (A, R)-injective-strongly faithful. Since $A \in R$-proj, it follows that $V \in R$-proj. By Proposition 6.3 , $V(\mathfrak{m})$ is an $A(\mathfrak{m})$-projective-injective faithful right module for every maximal ideal \mathfrak{m} in R. Then, $\operatorname{Hom}_{R(\mathfrak{m})}(V(\mathfrak{m}), R(\mathfrak{m}))$ is an $A(\mathfrak{m})$-projective-injective left module for every maximal ideal \mathfrak{m} in R.

Observe that in general if a finitely generated module X over a finite dimensional algebra B over a field K is faithful then $\operatorname{Hom}_{K}(X, K)$ is faithful as left B-module. In fact, let $b \in B$ and assume that $b \cdot f=0$ for every $f \in \operatorname{Hom}_{K}(X, K)$. Then, for each $x \in X$,

$$
0=b f(x)=f(x b), \forall f \in \operatorname{Hom}_{K}(X, K)
$$

Since X is finitely generated, we deduce that $x b=0$. Now using that X is faithful over B yields $b=0$.
Therefore, $D V(\mathfrak{m}) \simeq \operatorname{Hom}_{R(\mathfrak{m})}(V(\mathfrak{m}), R(\mathfrak{m}))$ is an $A(\mathfrak{m})$-projective-injective faithful left module for every maximal ideal \mathfrak{m} in R. By Proposition 6.4. $D V$ is an A-projective (A, R)-injective-strongly faithful left module. Thus, $\operatorname{domdim}_{(A, R) A} A \geq 1$. The converse implication is analogous. We also showed that $(A, D V, V)$ is a RQF3 algebra.

Corollary 6.6. Let A be a projective Noetherian R-algebra. Then, $\operatorname{domdim}_{(A, R)} A_{A}=\operatorname{domdim}_{(A, R)} A$.
Proof. Assume that $\operatorname{domdim}_{(A, R)} A_{A} \geq n$ for some $n \geq 1$. By Lemma 6.5. $\operatorname{domdim}_{(A, R)} A \geq 1$. By Corollary 5.9, domdim $(A, R) A$. $A \geq n$. Hence $\operatorname{domdim}_{(A, R) A} A \geq \operatorname{domdim}_{(A, R)} A_{A}$.

Similarly, $\operatorname{domdim}_{(A, R)} A_{A} \geq \operatorname{domdim}_{(A, R)} A$.
Thus, we will write domdim (A, R) avoiding the left and right notation to denote the relative dominant dimension of the regular module.

6.3 Relative dominant dimension on closed points

Proposition 6.7. Let (A, P, V) be a RQF3 algebra. Let $M \in A$ - $\bmod \cap R$-proj. Then, the following assertions are equivalent.
(i) $\operatorname{domdim}_{(A, R)} M \geq 1$.
(ii) $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)}\left(S \otimes_{R} M\right) \geq 1$ for every commutative R-algebra S.
(iii) $\operatorname{domdim}_{\left(A_{\mathfrak{m}}, R_{\mathfrak{m}}\right)} M_{\mathfrak{m}} \geq 1$ for every maximal ideal \mathfrak{m} in R.
(iv) $\operatorname{domdim}_{(A(\mathfrak{m})} M(\mathfrak{m}) \geq 1$ for every maximal ideal \mathfrak{m} in R.

Proof. Let $C=\operatorname{End}_{A}(V)$. Denote by D_{S} the standard duality with respect to S, $\operatorname{Hom}_{S}(-, S)$. Consider the map $\Phi_{M}: \operatorname{Hom}_{A}(V, D M) \otimes_{C} V \rightarrow D M$. Applying the functor $S \otimes_{R}-$ we get the commutative diagram

$$
\begin{gather*}
S \otimes_{R} \operatorname{Hom}_{A}(V, D M) \otimes_{C} V \xrightarrow{S \otimes_{R} \Phi_{M}} S \otimes_{R} D M \tag{110}\\
\simeq \mid \theta_{S, M} \\
S \otimes_{R} \operatorname{Hom}_{A}(V, D M) \otimes_{S \otimes_{R} C} S \otimes_{R} V \\
\simeq \mid \kappa_{S, M} \\
\operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} V, D_{S}\left(S \otimes_{R} M\right)\right) \otimes_{S \otimes_{R} C} S \otimes_{R} V \xrightarrow{\Phi_{S \otimes_{R} M}} D_{S}\left(S \otimes_{R} M\right)
\end{gather*}
$$

where the $\theta_{S, M}, \kappa_{S, M}$ and $l_{S, M}$ are the natural maps. These are isomorphisms since $V \in \operatorname{proj}-A$ and $M \in R$-proj.
$(i) \Longrightarrow(i i)$. Since Φ_{M} is an epimorphism, it follows by diagram 110 that $\Phi_{S \otimes_{R} M}$ is an epimorphism. As $\left(S \otimes_{R} A, S \otimes_{R} P, S \otimes_{R} V\right)$ is a RQF3 S-algebra, (ii) follows by Theorem 5.2.

The implication $(i i) \Longrightarrow$ (iii) follows by using (ii) with $S=R_{\mathfrak{m}}$. The implication (iii) \Longrightarrow (iv) follows by using the same argument as in the implication $(i) \Longrightarrow$ (ii) with $S=R_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}$ over $R_{\mathfrak{m}}$.
$(i v) \Longrightarrow(i)$. By the diagram 110 , it follows that $R(\mathfrak{m}) \otimes_{R} \Phi_{M}$ is surjective for every maximal ideal \mathfrak{m} in R. By Nakayama's Lemma, Φ_{M} is surjective. Finally (i) follows by Theorem 5.2 .

This last Proposition is not surprising since $S \otimes_{R}$ - is right exact and modules having relative dominant dimension at least one can be determined using surjective maps. By the same reason, flat extensions are compatible with relative dominant dimension of a module.

Proposition 6.8. Let (A, P, V) be a $R Q F 3 R$-algebra. Let $M \in A$ - $\bmod \cap R$-proj. The following assertions are equivalent. Let $n \in \mathbb{N}$.
(i) $\operatorname{domdim}_{(A, R)} M \geq n \geq 1$.
(ii) $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq n \geq 1$ for every flat commutative R-algebra.
(iii) $\operatorname{domdim}_{\left(A_{\mathfrak{m}}, R_{\mathfrak{m}}\right)} M_{\mathfrak{m}} \geq n \geq 1$ for every maximal ideal \mathfrak{m} in R.

Proof. By Proposition 6.3. $\left(S \otimes_{R} A, S \otimes_{R} P, S \otimes_{R} V\right)$ is a RQF3 S-algebra. Note that $S \otimes_{R} C \simeq$ $S \otimes_{R} \operatorname{End}_{A}(V) \simeq \operatorname{End}_{S \otimes_{R} A}\left(S \otimes_{R} V\right)$. By Proposition 6.7, domdim $\left(S \otimes_{R} A, S\right) S \otimes_{R} M \geq 1$. Assume that $n \geq 2$. Hence, Φ_{M} is an isomorphism. By the diagram 110, $\Phi_{S \otimes_{R} M}$ is an isomorphism. So, $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq 2$. Now assume that $n \geq 3$. Then,

$$
\begin{aligned}
0=S \otimes_{R} \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right) & =\operatorname{Tor}_{i}^{S \otimes_{R} C}\left(S \otimes_{R} \operatorname{Hom}_{A}(V, D M), S \otimes_{R} V\right) \\
& =\operatorname{Tor}_{i}^{S \otimes_{R} C}\left(\operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} V, D_{S}\left(S \otimes_{R} M\right)\right), S \otimes_{R} V\right), 1 \leq i \leq n-2
\end{aligned}
$$

Now, (ii) follows by Theorem 5.2 .
The implication $($ ii $) \Longrightarrow$ (iii) follows by applying $S=R_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} in R.
$($ iii $) \Longrightarrow(i)$. If $n \geq 1$, then by Proposition $6.7 \operatorname{domdim}_{(A, R)} M \geq 1$. If $n \geq 2$, then $\Phi_{M_{\mathrm{m}}}$ is isomorphism for every maximal ideal \mathfrak{m} in R. By the diagram 110), $R_{\mathfrak{m}} \otimes_{R} \Phi_{M}$ is isomorphism for every maximal ideal \mathfrak{m} in R. Hence, Φ_{M} is an isomorphism. Moreover,

$$
\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)_{\mathfrak{m}}=\operatorname{Tor}_{i}^{C_{\mathfrak{m}}}\left(\operatorname{Hom}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}, D_{\mathfrak{m}} M_{\mathfrak{m}}\right), V_{\mathfrak{m}}\right)=0,1 \leq i \leq n-2
$$

By Theorem 5.2. domdim $_{(A, R)} M \geq n \geq 1$.
Proposition 6.9. Let (A, P, V) be a RQF3 R-algebra. Let $M \in A$ - $\bmod \cap R$-proj. If S is a Noetherian faithfully flat R-algebra, then

$$
\begin{equation*}
\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M=\operatorname{domdim}_{(A, R)} M \tag{111}
\end{equation*}
$$

Proof. By Proposition 6.8, $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq \operatorname{domdim}_{(A, R)} M$. The map $\Phi_{S \otimes_{R} M}$ is epi (resp. iso) if and only the map $S \otimes_{R} \Phi_{M}$ is epi (resp. iso). Recall that since S is faithfully flat an R-module is zero if and only if it is the zero module under the functor $S \otimes_{R}-$. In particular, the map $\Phi_{S \otimes_{R} M}$ is epi (resp. iso) if and only if the map Φ_{M} is epi (resp. iso). By flatness of S,

$$
\operatorname{Tor}_{i}^{S \otimes_{R} C}\left(\operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} V, \operatorname{Hom}_{S}\left(S \otimes_{R} M, S\right), S \otimes_{R} V\right) \simeq S \otimes_{R} \operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right), \quad \forall i>0\right.
$$

Therefore, $\operatorname{Tor}_{i}^{S \otimes_{R} C}\left(\operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} \quad V, \operatorname{Hom}_{S}\left(S \otimes_{R} \quad M, S\right), S \otimes_{R} V\right)\right.$ is zero if and only if $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)$ is zero. The result follows Theorem 5.2 and Proposition 3.23 .

An immediate application of Proposition 6.9 is for polynomial rings $R\left[X_{1}, \ldots, X_{n}\right]$. Further, $R\left[X_{1}, \ldots, X_{n}\right]$ is free of infinite rank over R, and so it is faithfully flat.

An example of the importance of changing the ground ring to compute dominant dimension is that for finite dimensional algebras the computation of dominant dimension can be reduced to the computation of dominant dimension over algebraically closed fields. This is a known fact, and it can be found in Mue68, Lemma 5].

Proposition 6.10. Let A be a finite dimensional algebra over a field K. Assume that A is QF3 algebra. Then, $\operatorname{dom} \operatorname{dim} A=\operatorname{dom} \operatorname{dim} \bar{K} \otimes_{K} A$.

Proof. Let \bar{K} be the algebraic closure of K. In particular, \bar{K} can be regarded as K-vector space, hence it is K-free. Furthermore, \bar{K} is faithfully flat over K. By Proposition 6.9, the claim follows.

The idea here used can be generalized to the next Proposition. For the second part of its proof, we will require the following lemma.

Lemma 6.11. Let $f: R \rightarrow S$ be a surjective R-algebra map. Let A be a projective Noetherian R-algebra. Then, for every $Y \in S \otimes_{R} A$-mod, $S \otimes_{R} Y \simeq Y$ as $S \otimes_{R} A$-modules.

Proof. Let $Y \in S \otimes_{R} A$-mod. Y can be regarded as an A-module with action $a \cdot y=\left(f\left(1_{R}\right) \otimes_{R} a\right) \cdot y=$ $\left(1_{S} \otimes a\right) \cdot y$. Consider the multiplication map $\mu: S \otimes_{R} Y \rightarrow Y . \mu$ is an $S \otimes_{R} A$-homomorphism. The map $\nu: Y \rightarrow S \otimes_{R} Y$, given by $\nu(y)=1_{S} \otimes y$, is an $S \otimes_{R} A$-homomorphism. Further, ν and μ are inverse to each other. It follows that μ is an $S \otimes_{R} A$-isomorphism.

Proposition 6.12. Let S be a commutative algebra over a commutative Noetherian ring R. Let A be projective Noetherian R-algebra. Let $M \in A-\bmod \cap R$-proj.

Then, $\operatorname{domdim}_{(A, R)} M \leq \operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M$. Assume, additionally the following

- (A, P, V) is a RQF3 R-algebra;
- there is a surjective map of R-algebras $R \rightarrow S$ making S an R-projective module.

Then, $\operatorname{domdim}_{(A, R)} M=\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M$.
Proof. Let domdim (A, R) $M \geq n$. Then, there exists an (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n} \tag{112}
\end{equation*}
$$

such that each X_{i} is A-projective (A, R)-injective. Applying D yields the (A, R)-exact sequence

$$
\begin{equation*}
D X_{n} \rightarrow D X_{n-1} \rightarrow \cdots \rightarrow D X_{1} \rightarrow D M \rightarrow 0 \tag{113}
\end{equation*}
$$

The functor $S \otimes_{R}$ - is exact on (A, R)-exact sequences, so we have the $S \otimes_{R} A$-exact sequence

$$
\begin{equation*}
S \otimes_{R} D X_{n} \rightarrow S \otimes_{R} D X_{n-1} \rightarrow \cdots \rightarrow S \otimes_{R} D X_{1} \rightarrow S \otimes_{R} D M \rightarrow 0 \tag{114}
\end{equation*}
$$

Observe that $S \otimes_{R} D M=S \otimes_{R} \operatorname{Hom}_{R}(M, R) \simeq \operatorname{Hom}_{S \otimes_{R} R}\left(S \otimes_{R} M, S \otimes_{R} R\right)=D_{S}\left(S \otimes_{R} M\right)$ and each $S \otimes_{R} D X_{i}$ is a $S \otimes_{R} A$-projective $\left(S \otimes_{R} A, S\right.$-injective right module. As $S \otimes_{R} M \in S$-proj, (114) is $\left(S \otimes_{R} A, S\right)$-exact. Applying D_{S} yields that $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq n$. This shows that, $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq \operatorname{domdim}_{(A, R)} M$.

Now assume that there is a surjective map of R-algebras $R \rightarrow S$. In particular, S can be regarded as an R-module by restriction of scalars. Assume that this map makes S an R-projective module. Let $\operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M \geq n$ for some integer $n \geq 0$. Then, there exists an $\left(S \otimes_{R} A, S\right)$-exact sequence

$$
\begin{equation*}
0 \rightarrow S \otimes_{R} M \rightarrow Y_{1} \rightarrow \cdots \rightarrow Y_{n} \tag{115}
\end{equation*}
$$

where $Y_{i}, 1 \leq i \leq n$, is ($S \otimes_{R} A$)-projective $\left(S \otimes_{R} A, S\right)$-injective. Applying D_{S} we obtain the $\left(S \otimes_{R} A, S\right)$ exact sequence

$$
\begin{equation*}
D_{S} Y_{n} \rightarrow \cdots \rightarrow D_{S} Y_{1} \rightarrow D_{S}\left(S \otimes_{R} M\right) \rightarrow 0 \tag{116}
\end{equation*}
$$

Observe that $\left(S \otimes_{R} A, S \otimes_{R} P, S \otimes_{R} V\right)$ is a RQF3 S-algebra. Thus, each $D_{S} Y_{i} \in \operatorname{add}_{S \otimes_{R} A} S \otimes_{R} V$. As S is projective over R, S is an R-summand of $\oplus_{I} R$ for some set I. Hence, $D_{S} Y_{i}$ is an A-summand of $S \otimes_{R} V^{t}$ which is an A-summand of $\oplus_{I} V^{t}$. Therefore, $D_{S} Y_{i} \in \operatorname{Add}_{A} V$. By Observation 5.4, the canonical $\operatorname{map} \Phi: \operatorname{Hom}_{A}\left(V, D_{S}\left(S \otimes_{R} M\right)\right) \otimes_{C} V \rightarrow D_{S}\left(S \otimes_{R} M\right)$ is an isomorphism and for every $1 \leq i \leq n-2$ $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}\left(V, D_{S}\left(S \otimes_{R} M\right)\right), V\right)=0$. Now, note that

$$
D_{S}\left(S \otimes_{R} M\right) \simeq \operatorname{Hom}_{S}\left(S \otimes_{R} M, S\right) \simeq S \otimes_{R} \operatorname{Hom}_{R}(M, R)=S \otimes_{R} D M
$$

is an A-summand of $\oplus_{I} D M$. In particular, Φ_{M} is an isomorphism and $\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$, $1 \leq i \leq n-2$. So, $\operatorname{domim}_{(A, R)} M \geq n$. This shows that $\operatorname{domdim}_{(A, R)} M \geq \operatorname{domdim}_{\left(S \otimes_{R} A, S\right)} S \otimes_{R} M$.

In the following, we will see that we can reduce the computation of relative dominant dimension to computing dominant dimension over fields.

Theorem 6.13. Let (A, P, V) be a $R Q F 3$ algebra over a Noetherian ring R. Let $M \in A$-mod $\cap R$-proj. Then,

$$
\operatorname{domdim}_{(A, R)} M=\inf \left\{\operatorname{domdim}_{A(\mathfrak{m})} M(\mathfrak{m}): \mathfrak{m} \text { maximal ideal in } R\right\} .
$$

Proof. Let \mathfrak{m} be a maximal ideal in R. By Proposition $6.12, \operatorname{domdim}_{A(\mathfrak{m})} M(\mathfrak{m}) \geq \operatorname{domdim}_{(A, R)} M$.
Assume that $\inf \left\{\operatorname{domdim}_{A(\mathfrak{m})} M(\mathfrak{m}): \mathfrak{m}\right.$ maximal ideal in $\left.R\right\} \geq n$. We want to show that $\operatorname{domdim}_{(A, R)} M \geq n$. By Proposition 6.3. $(A(\mathfrak{m}), P(\mathfrak{m}), V(\mathfrak{m}))$ is a QF3 algebra for every maximal ideal \mathfrak{m} in R. Denote by $D_{(\mathfrak{m})}$ the standard duality with respect to $R(\mathfrak{m})$ and denote $C=\operatorname{End}_{A}(V)$.

If $n=0$ there is nothing to show. Assume that $n=1$. Consider the following commutative diagram

By assumption, $\Phi_{M(\mathfrak{m})}$ is an epimorphism. Thus, $\Phi_{M}(\mathfrak{m})$ is an epimorphism for every maximal ideal \mathfrak{m} in R. By Nakayama's Lemma, Φ_{X} is an epimorphism. By Proposition 3.23, $\operatorname{domdim}_{(A, R)} M \geq 1$.

Assume that $n=2$. By the commutative diagram $117 \Phi_{M}(\mathfrak{m})$ is an isomorphism for every maximal ideal \mathfrak{m} in R. Since Φ_{M} is epi and $M \in R$-proj, Φ_{M} splits over R. That is, there is a map $t \in \operatorname{Hom}_{R}\left(D M, \operatorname{Hom}_{A}(V, D M) \otimes_{C} V\right)$ such that $\Phi_{M} \circ t=\mathrm{id}_{D M}$. In particular, t is a monomorphism. Applying $R(\mathfrak{m}) \otimes_{R}-$, we get $\operatorname{id}_{D M(\mathfrak{m})}=\Phi_{M} \circ t(\mathfrak{m})=\Phi_{M}(\mathfrak{m}) \circ t(\mathfrak{m})$ for every maximal ideal \mathfrak{m} in R. Since $\Phi_{M}(\mathfrak{m})$ is an isomorphism for every maximal ideal \mathfrak{m} in R it follows that $t(\mathfrak{m})$ is an isomorphism for every maximal ideal \mathfrak{m} in R. By Nakayama's Lemma, t is surjective. So, t is an R-isomorphism. It follows that Φ_{M} is bijective. By Proposition 3.23, $\operatorname{domdim}_{(A, R)} M \geq 2$.

Assume now that $n \geq 3$. In particular, $\operatorname{domim}_{(A, R)} M \geq 2$. Hence $\operatorname{Hom}_{A}(V, D M) \otimes_{C} V \simeq D M \in$ R-proj. By Theorem 5.2, $\operatorname{Tor}_{i}^{C(\mathfrak{m})}\left(\operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m}), V(\mathfrak{m}))=0,1 \leq i \leq n-2\right.$ for every maximal ideal \mathfrak{m} in R. Let

$$
\begin{equation*}
\cdots \rightarrow Q_{2} \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow V \rightarrow 0 \tag{118}
\end{equation*}
$$

be a C-projective resolution of V. Since $V \in R$-proj, this resolution is (C, R)-exact. Thus,

$$
\begin{equation*}
\cdots \rightarrow Q_{2}(\mathfrak{m}) \rightarrow Q_{1}(\mathfrak{m}) \rightarrow Q_{0}(\mathfrak{m}) \rightarrow V(\mathfrak{m}) \rightarrow 0 \tag{119}
\end{equation*}
$$

is a $C(\mathfrak{m})$-projective resolution of V. Consider the chain complex $P^{\bullet}=\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}$, where Q^{\bullet} denotes the deleted projective resolution (118). Each object $\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q_{i} \in \operatorname{add}_{R} \operatorname{Hom}_{A}(V, D M) \subset$ R-proj, since $\operatorname{Hom}_{A}(V, D M) \in R$-proj. By LemmaA.5, we obtain the Künneth Spectral sequence

$$
\begin{equation*}
E_{i, j}^{2}=\operatorname{Tor}_{i}^{R}\left(H_{j}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}\right), R(\mathfrak{m})\right) \Longrightarrow H_{i+j}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}(\mathfrak{m})\right) \tag{120}
\end{equation*}
$$

We have that

$$
\begin{equation*}
\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}(\mathfrak{m}) \simeq \operatorname{Hom}_{A}(V, D M)(\mathfrak{m}) \otimes_{C(\mathfrak{m})} Q(\mathfrak{m})^{\bullet} \simeq \operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m})) \otimes_{C(\mathfrak{m})} Q(\mathfrak{m})^{\bullet} \tag{121}
\end{equation*}
$$

where $Q(\mathfrak{m})^{\bullet}$ is a $C(\mathfrak{m})$-projective resolution of $V(\mathfrak{m})$. Hence,

$$
\begin{equation*}
H_{i+j}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}(\mathfrak{m})\right)=\operatorname{Tor}_{i+j}^{C(\mathfrak{m})}\left(\operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m})), V(\mathfrak{m})\right) \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{j}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} Q^{\bullet}\right)=\operatorname{Tor}_{j}^{C}\left(\operatorname{Hom}_{A}(V, D M), C\right) \tag{123}
\end{equation*}
$$

Thus, for every maximal ideal \mathfrak{m} in R,

$$
\begin{equation*}
E_{i, j}^{2}=\operatorname{Tor}_{i}^{R}\left(\operatorname{Tor}_{j}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right), R(\mathfrak{m})\right) \Longrightarrow \operatorname{Tor}_{i+j}^{C(\mathfrak{m})}\left(\operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m})), V(\mathfrak{m})\right) \tag{124}
\end{equation*}
$$

We shall prove by induction on $1 \leq i \leq n-2$ that $\operatorname{Tor}_{j}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$. By Lemma A. 3 there is an exact sequence

$$
\begin{equation*}
E_{2,0}^{2} \rightarrow E_{0,1}^{2} \rightarrow \operatorname{Tor}_{1}^{C(\mathfrak{m})}\left(\operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m})), V(\mathfrak{m})\right)=0 \tag{125}
\end{equation*}
$$

As $\operatorname{Hom}_{A}(V, D M) \otimes_{C} V \in R$-proj, $E_{2,0}^{2}=\operatorname{Tor}_{2}^{R}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} V, R(\mathfrak{m})\right)=0$. Thus, for every maximal ideal \mathfrak{m} in $R, 0=E_{0,1}^{2}=\operatorname{Tor}_{1}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right) \otimes_{R} R(\mathfrak{m})$. Therefore, $\operatorname{Tor}_{1}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$.

Assume now that $\operatorname{Tor}_{l}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$ for some $1 \leq l<n-2$. Then,

$$
\begin{equation*}
E_{i, j}^{2}=\operatorname{Tor}_{i}^{R}\left(\operatorname{Tor}_{j}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right), R(\mathfrak{m})\right)=\operatorname{Tor}_{i}^{R}(0, R(\mathfrak{m}))=0,1 \leq j \leq l, i \geq 0 \tag{126}
\end{equation*}
$$

By Lemma A.4, there exists an exact sequence

$$
\begin{equation*}
E_{l+2,0}^{2} \rightarrow E_{0, l+1}^{2} \rightarrow \operatorname{Tor}_{l+1}^{C(\mathfrak{m})}\left(\operatorname{Hom}_{A(\mathfrak{m})}(V(\mathfrak{m}), D M(\mathfrak{m})), V(\mathfrak{m})\right)=0 \tag{127}
\end{equation*}
$$

where $E_{l+2,0}^{2}=\operatorname{Tor}_{l+2}^{R}\left(\operatorname{Hom}_{A}(V, D M) \otimes_{C} V, R(\mathfrak{m})\right)=0$. Therefore, $E_{0, l+1}^{2}=\operatorname{Tor}_{l+1}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)(\mathfrak{m})=$ 0 for every maximal ideal \mathfrak{m} in R. Therefore, $\operatorname{Tor}_{l+1}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0$. Hence, we obtain

$$
\begin{equation*}
\operatorname{Tor}_{i}^{C}\left(\operatorname{Hom}_{A}(V, D M), V\right)=0,1 \leq i \leq n-2 \tag{128}
\end{equation*}
$$

By Theorem 5.2, domdim $_{(A, R)} M \geq n$.

Combining this theorem with Proposition 6.10, we deduce that the computation of relative dominant dimension of a projective Noetherian R-algebra can be reduced to computing the dominant dimension of finite dimensional algebras over algebraically closed fields. This shows that the dominant dimension is more static under change of ring than other homological invariants. For example, the global dimension of an algebra can heavily depend on the ground field of the algebra, and even worse it can depend on the Krull dimension of the ground ring in case of Noetherian algebras.

This reduction theorem also explains the meaning behind the generators relative cogenerators which arise in the relative Morita-Tachikawa correspondence. These are the ones which make its endomorphism algebra to admit a base change property like the Schur algebra.

6.4 Base change property

Proposition 6.14. Let B be a projective Noetherian R-algebra. Let $M \in B-\bmod \cap R$-proj be a B generator (B, R)-cogenerator. The following assertions are equivalent.
(i) $D M \otimes_{B} M \in R$-proj.
(ii) For every commutative R-algebra $S, S \otimes_{R} \operatorname{End}_{B}(M)^{o p} \simeq \operatorname{End}_{S \otimes_{R} B}\left(S \otimes_{R} M\right)^{o p}$ as S-algebras.

Proof. Assume that $D M \otimes_{B} M \in R$-proj holds. Let S be a commutative R-algebra. Denote by D_{S} the standard duality over S. As $S \otimes_{R}$ - preserves coproducts,

$$
\begin{equation*}
D_{S}\left(S \otimes_{R} M\right) \otimes_{S \otimes_{R} B} S \otimes_{R} M=\operatorname{Hom}_{S}\left(S \otimes_{R} M, S\right) \otimes_{S \otimes_{R} B} S \otimes_{R} M \simeq S \otimes_{R} \operatorname{Hom}_{R}(M, R) \otimes_{B} M \in S \text {-proj } \tag{129}
\end{equation*}
$$

Denote by μ the canonical map $S \otimes_{R} \operatorname{Hom}_{B}(M, M) \rightarrow \operatorname{Hom}_{S \otimes_{R} B}\left(S \otimes_{R} M, S \otimes_{R} M\right)$. By Proposition 2.3. the canonical map $S \otimes_{R} D M \otimes_{B} M \rightarrow D_{S}\left(S \otimes_{R} M\right) \otimes_{S \otimes_{R} B} S \otimes_{R} M$ is an isomorphism. Consider the following commutative diagram

where the columns are isomorphisms by Proposition 2.1 since

$$
\begin{equation*}
D M \otimes_{B} M \in R \text {-proj, } \quad D_{S}\left(S \otimes_{R} M\right) \otimes_{S \otimes_{R} B} S \otimes_{R} M \in S \text {-proj } \tag{131}
\end{equation*}
$$

Consequently, $D_{S} \mu$ is an isomorphism. Again, since $D_{S}\left(S \otimes_{R} M\right) \otimes_{S \otimes_{R} B} S \otimes_{R} M \in S$-proj it follows that μ is bijective.

Conversely, assume that (ii) holds. In particular, for every maximal ideal \mathfrak{m} in $R, \operatorname{End}_{B(\mathfrak{m})}(M(\mathfrak{m})) \simeq$ $\operatorname{End}_{B}(M)(\mathfrak{m})$. Since $R(\mathfrak{m}) \otimes_{R}$ - preserves direct sums, we get that $M(\mathfrak{m})$ is a generator-cogenerator over $B(\mathfrak{m})$. Hence by Morita-Tachikawa correspondence, domdim $\operatorname{End}_{B(\mathfrak{m})}(M(\mathfrak{m}))^{o p} \geq 2$. Now, for each maximal ideal \mathfrak{m} in R, $($ ii $)$ yields domdim $\operatorname{End}_{B}(M)^{o p}(\mathfrak{m}) \geq 2$. By Proposition 6.3. M is an $\operatorname{End}_{B}(M)^{o p_{-}}$ projective $\left(\operatorname{End}_{B}(M)^{o p}, R\right)$-injective-strongly faithful module. By Proposition 6.13, $\operatorname{domdim}\left(\operatorname{End}_{B}(M)^{o p}, R\right) \geq 2$. By relative Morita-Tachikawa correspondence $D M \otimes_{B} M \in R$-proj.

As usual, we can compare this situation with what happens to regular rings with Krull dimension at most one.

Lemma 6.15. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Let A be a projective Noetherian R-algebra. Then, the canonical map $S \otimes_{R} \operatorname{Hom}_{A}(M, X) \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R}\right.$ $\left.M, S \otimes_{R} X\right)$ is a monomorphism for every $M, X \in A-\bmod$ and every commutative R-algebra S.

Proof. Let $M, X \in A$-mod and let S be a commutative R-algebra. Consider an A-projective presentation

$$
\begin{equation*}
P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0 \tag{132}
\end{equation*}
$$

The functor $\operatorname{Hom}_{S \otimes_{R} A}\left(-, S \otimes_{R} X\right) \circ S \otimes_{R}-: A-\bmod \rightarrow S \otimes_{R} A$-mod is contravariant left exact. So, the induced sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} M, S \otimes_{R} X\right) \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} P_{0}, S \otimes_{R} X\right) \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} P_{1}, S \otimes_{R} X\right) \tag{133}
\end{equation*}
$$

THe functor $\operatorname{Hom}_{A}(-, X)$ is left exact, thus we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{A}(M, X) \rightarrow \operatorname{Hom}_{A}\left(P_{0}, X\right) \rightarrow \operatorname{Hom}_{A}\left(P_{1}, X\right) \tag{134}
\end{equation*}
$$

Denote by f the map $\operatorname{Hom}_{A}(M, X) \rightarrow \operatorname{Hom}_{A}\left(P_{0}, X\right)$. By exactness of 134 , the cokernel of f is a submodule of $\operatorname{Hom}_{A}\left(P_{1}, X\right)$. Since $\operatorname{dim} R \leq 1$, the cokernel of f is R-projective. In particular, f is a split R-mono and so it remains a monomorphism under $S \otimes_{R}-$. Using the commutative diagram

we conclude that the canonical map $S \otimes_{R} \operatorname{Hom}_{A}(M, X) \rightarrow \operatorname{Hom}_{S \otimes_{R} A}\left(S \otimes_{R} M, S \otimes_{R} X\right)$ is a monomorphism.

6.5 Relative Nakayama conjecture

As in the field case, the relative dominant dimension is bounded by the global dimension.
Proposition 6.16. Let A be a projective Noetherian R-algebra. If $\operatorname{domdim}(A, R)<\infty$, then

$$
\operatorname{domdim}(A, R) \leq \operatorname{injdim}_{(A, R)} A, \quad \operatorname{domdim}(A, R) \leq \operatorname{gldim} A
$$

Proof. Assume that domdim $(A, R)=n<+\infty$. So, there exists an (A, R)-exact sequence

$$
\begin{equation*}
0 \rightarrow A \rightarrow X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \tag{136}
\end{equation*}
$$

with all X_{i} being (A, R)-injective A-projective. Applying D we obtain the right A-exact sequence

$$
\begin{equation*}
D X_{n-1} \rightarrow \cdots \rightarrow D X_{1} \rightarrow D X_{0} \rightarrow D A \rightarrow 0 \tag{137}
\end{equation*}
$$

In particular, there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow K_{n-2} \rightarrow D X_{n-2} \rightarrow \cdots \rightarrow D X_{1} \rightarrow D X_{0} \rightarrow D A \rightarrow 0 \tag{138}
\end{equation*}
$$

By contradiction, assume that $n>\operatorname{pdim}_{A} D A$. Since all $D X_{i}$ are A-projective, it follows that K_{n-2} must be A-projective. Hence $D K_{n-2}$ is (A, R)-injective and R-projective. Moreover, we have a factorization

and the monomorphism is an (A, R)-monomorphism since this factorization is given by (136). So, it must split over A, and therefore $D K_{n-2}$ is also A-projective. Applying D to 138), it follows that $\operatorname{dom} \operatorname{dim}(A, R)$ is infinite. Therefore, we must have

$$
\begin{array}{r}
\operatorname{injdim}_{(A, R)} A=\operatorname{pdim}_{A} D A \geq n=\operatorname{domdim}(A, R) \\
\operatorname{gldim} A \geq \operatorname{pdim}_{A} D A \geq n=\operatorname{domdim}(A, R) .
\end{array}
$$

Theorem 6.17. If the Nakayama conjecture holds for finite dimensional algebras over a field, then the relative Nakayama Conjecture holds for any projective Noetherian R-algebra.

Proof. Assume that $\operatorname{domdim}(A, R)=+\infty$. By Theorem 6.13, $\operatorname{domdim} A(\mathfrak{m})=+\infty$ for every maximal ideal \mathfrak{m} in R. If the Nakayama conjecture holds for finite dimensional algebras over fields, then $A(\mathfrak{m})$ is $A(\mathfrak{m})$-injective for every maximal ideal \mathfrak{m} in R. As A is projective when regarded as R-module, it follows that the (left) regular module A is (A, R)-injective by Theorem 2.12 . In the same way, the right regular module A is (A, R)-injective. Thus, A is a relative self-injective R-algebra.

6.5.1 Center of a Noetherian algebra as ground ring

At this point we can ask why we never considered computing relative dominant dimension of algebra A over its center $Z(A)$ to obtain information of relative dominant dimension of A as R-algebra for some commutative Noetherian ring R. The main problem lies in the fact that Noetherian algebras in many instances are not projective as modules over their center which is a crucial assumption made throughout this paper. So, nice properties like base change properties might not hold in such scenario. For example, let k an algebraically closed field and let A be the following quiver k-algebra

$$
1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2, \quad \alpha \beta=0 .
$$

Note that we read the arrows in a path like morphisms, that is, from right to left. Denote by e_{i} the idempotent of A associated with the vertex $i, i=1,2$. It is not difficult to see that A has dominant dimension two as finite-dimensional k-algebra. The center of A is the subring of A generated by the elements $\beta \alpha$ and $e_{1}+e_{2}=1_{A}$, that is, $Z(A) \simeq k[x] /\left(x^{2}\right)$. Since $Z(A)$ is a principal ideal domain, A cannot be projective over $Z(A)$ since it has dimension 5 over k. We can see that all the $(A, Z(A))$ projective modules are in the additive closure of either $A \otimes_{Z(A)} Z(A) \simeq A$ or $A \otimes_{Z(A)} k$. The latter is the direct sum of $A e_{2}$ with the injective A-module associated with the vertex 2 . Therefore, $\operatorname{Hom}_{k}\left(A_{A}, k\right)$ is a left $(A, Z(A))$-projective module. Furthermore,

$$
A_{A} \simeq \operatorname{Hom}_{k}\left(\operatorname{Hom}_{k}\left(A_{A}, k\right), k\right) \in \operatorname{add}_{A} \operatorname{Hom}_{k}\left({ }_{A} A \otimes_{Z(A)} M, k\right)=\operatorname{add}_{A} \operatorname{Hom}_{Z(A)}\left({ }_{A} A, \operatorname{Hom}_{k}(M, k)\right)
$$

Since $A \simeq A^{o p}$, it follows that A is a relative self-injective algebra over its center $Z(A)$.
So, choosing the center as the ground ring might not give much additional information about the algebra A. In particular, such an approach might not give any information on the relative dominant dimension of a projective Noetherian R-algebra for some commutative Noetherian ring distinct from the center of the algebra.

7 Applications and some examples

We will now give some applications of the theory developed here. First, we will start by observing that Roggenkamp and Auslander's correspondence (see AR72]) for orders of finite type can be formulated in terms of relative dominant dimension (Theorem 7.3). Secondly, we see that reflexive modules of projective Noetherian algebras can be determined using relative dominant dimension (Theorem 7.5). In addition, we are now able to extend the concepts of Morita algebras (see Theorem 7.6) and gendo-symmetric algebras (see Theorem 7.8) to the integral setup. We finish this section computing the relative dominant dimension of Schur algebras (see Theorem 7.12) and quantized Schur algebras (see Theorem 7.20) for the parameters $n \geq d$. Along the way, we give an alternative description of a basis of quantized Schur algebras (Proposition 7.16).

7.1 Orders of finite lattice type

When the ground ring R is a Dedekind domain, projective Noetherian R-algebras A are known in the literature as R-orders. For a more detailed exposure of representation theory of R-orders, we refer to Rei70. The modules belonging to A-mod $\cap R$-proj are known as A-lattices. Let F be the quotient field of R, then $F \otimes_{R} A$ is a finite dimensional algebra over F. We can identify A with $1 \otimes_{R} A$, so A is embedded in the finite dimensional algebra $F \otimes_{R} A$. The same idea holds for the A-lattices. Every A-lattice M can be embedded in the vector space $F \otimes_{R} M$. The (A, R)-monomorphisms also receive special attention in order theory. Given two A-lattices M, N, M is said to be R-pure A-sublattice of N if there exists an (A, R)-monomorphism $M \rightarrow N$. Moreover, the (A, R)-monomorphisms arise as inclusions of $F \otimes_{R} A$-modules.

Theorem 7.1. Zas38] Let R be a Dedekind domain and let A be an R-order. Let F be the quotient field of R. Given any A-lattice N, there is a bijection between A-submodules W of $F \otimes_{R} N$ and R-pure A-sublattices M of N. The correspondence is given by

$$
M=N \cap W, \quad W=F \otimes_{R} M
$$

Moreover, each $V \in F \otimes_{R} A-\bmod$ is of the form $F \otimes_{R} N$ for some A-lattice N in V.
We can deduce in this section that the characterization of orders of Finite Lattice-Type by Auslander and Roggenkamp AR72] is a particular case of relative Morita-Tachikawa correspondence (Theorem4.3). We say that an R-order A has finite lattice-type if A has a finite number of indecomposable A-lattices. Otherwise, we say that A is of infinite lattice-type.

By Fad65, Proposition 25.1], if $F \otimes_{R} A$ is not semi-simple, then A is of infinite lattice type. We remark that semi-simple algebras over algebraic number fields are separable. In AR72, R is assumed to be a complete discrete valuation ring such that its quotient field is a completion of an algebraic number field. This is due to the following fact:

Theorem 7.2. [Kne66, Jon63] Let R be a Dedekind domain such that its quotient field is an algebraic number field. Let G be a finite group and $R G$ the group algebra of G over R. Then, $R G$ is of finite lattice type if and only if $\hat{R G} m_{m}$ is of finite lattice type for every maximal ideal m in R.

This reduction technique is useful because for every projective Noetherian algebra over a Noetherian local complete ring, A, A-mod is a Krull-Schmidt category. In particular, this allowed Jones, Heller and Reiner to completely determine all group algebras of finite type.

Theorem 7.3. Let R be a local complete discrete valuation ring such that its quotient field K is a completion of an algebraic number field. There is a bijection between

$$
\left\{\begin{array}{c}
A \text { an } R \text {-order in } a \\
A: \text { semi-simple } K \text {-algebra } \\
\text { of finite type }
\end{array}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
B \text { an } R \text {-order in a semi-simple } K \text {-algebra with } \\
\text { domdim }(B, R) \geq 1, \text { gldim } B \leq 2, \text { and } \\
B: \text { every minimal }(B, R) \text {-injective-strongly faithful } \\
\text { projective module satisfies } \\
\text { the double centralizer property }
\end{array}\right\} / \text { iso }
$$

In this notation, $A \sim A^{\prime}$ if and only if A and A^{\prime} are Morita equivalent. This correspondence is given by:

$$
\begin{aligned}
A & \mapsto B=\operatorname{End}_{A}(G)^{o p} \\
\left(\operatorname{End}_{B}(N)\right) & \leftrightarrow B
\end{aligned}
$$

where N is an B-projective (B, R)-injective-strongly faithful right module and G is an additive generator of $A-\bmod \cap R$-proj.

Proof. Let A be an R-order such that $K \otimes_{R} A$ is a semi-simple algebra and A is of finite type. Consider $G=\oplus_{i \in I} M_{i}$, where M_{i} are all non-isomorphic indecomposable A-lattices for some finite set I. In particular, every module of A-mod belongs to add G. Thus, G is an additive generator of A-mod. So, G is a generator (A, R)-cogenerator. As $A \in R$-proj, it follows by Theorem 4.3 that $B=\operatorname{End}_{A}(G)^{o p}$ has relative dominant dimension $\operatorname{dom} \operatorname{dim}(B, R)$ greater or equal than one and all minimal projective (B, R) injective-strongly faithful modules satisfy the double centralizer property between A and B. Since K is flat as R-module B is an R-order in the semi-simple K-algebra

$$
\begin{equation*}
K \otimes_{R} B=K \otimes_{R} \operatorname{End}_{A}(G) \simeq \operatorname{End}_{K \otimes_{R} A}\left(K \otimes_{R} G\right) \tag{140}
\end{equation*}
$$

In fact, $K \otimes_{R} G$ is a semi-simple module over $K \otimes_{R} A$ and consequently, its endomorphism algebra is semi-simple by the Wedderburn Theorem. It remains to show that gldim $B \leq 2$.

Let $X \in B$-mod. Let $P_{1} \xrightarrow{h} P_{0} \rightarrow X \rightarrow 0$ be the beginning of a B-projective resolution of X. By projectivization, the functor $\operatorname{Hom}_{A}(G,-): A$-mod $\rightarrow B$-mod induces an equivalence between A-mod $\cap R$-proj $=\operatorname{add} G$ and B-proj. Hence, there exists modules $M_{0}, M_{1} \in A$-mod $\cap R$-proj such that $P_{i} \simeq \operatorname{Hom}_{A}\left(G, M_{i}\right), i=0,1$. Further, there exists a map $f \in \operatorname{Hom}_{A}\left(M_{1}, M_{0}\right)$ satisfying $h=\operatorname{Hom}_{A}(G, f)$. Applying $\operatorname{Hom}_{A}(G,-)$ to $0 \rightarrow \operatorname{ker} f \rightarrow M_{1} \xrightarrow{f} M_{0}$ yields the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{A}(G, \operatorname{ker} f) \rightarrow P_{1} \xrightarrow{h} P_{0} \rightarrow X \rightarrow 0 . \tag{141}
\end{equation*}
$$

R has Krull dimension one, therefore $\operatorname{ker} f$ is an A-lattice. By assumption, $\operatorname{ker} f \in \operatorname{add} G$. This shows that $\operatorname{Hom}_{A}(G, \operatorname{ker} f) \in \operatorname{add} \operatorname{Hom}_{A}(G, G)=B$-proj. Hence, $\operatorname{pdim}_{B} X \leq 2$.

Conversely, assume that B is an R-order in a semi-simple K-algebra $K \otimes_{R} B$ with $\operatorname{domdim}(B, R) \geq 1$, gldim $B \leq 2$ and all minimal (B, R)-injective-strongly faithful projective modules M satisfy a double centralizer property between B and $\operatorname{End}_{B}(M)$. Let M be a B-lattice such that ($B, D M, M$) is a RQF3 algebra. By Theorem 4.3, $A=\operatorname{End}_{B}(M) \in R$-proj and M is an A-generator (A, R)-cogenerator such that $B \simeq \operatorname{End}_{A}(M)^{o p}$ as R-algebras. So, A is an R-order in the semi-simple K-algebra

$$
\begin{equation*}
K \otimes_{R} A \simeq K \otimes_{R} \operatorname{End}_{B}(M) \simeq \operatorname{End}_{K \otimes_{R} B}\left(K \otimes_{R} M\right) . \tag{142}
\end{equation*}
$$

Since A-mod is a Krull-Schmidt category, the number of indecomposable A-lattices summands of M is finite and unique up to isomorphism. Therefore, it is enough to prove that $\operatorname{add}_{A} M=A$ - $\bmod \cap R$-proj.

Let $X \in A$-mod $\cap R$-proj. Let $0 \rightarrow X \rightarrow I_{0} \rightarrow I_{1}$ be the standard (A, R)-injective resolution of X. Applying the functor $\operatorname{Hom}_{A}(M,-)$ yields the B-exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}_{A}(M, X) \rightarrow \operatorname{Hom}_{A}\left(M, I_{0}\right) \rightarrow \operatorname{Hom}_{A}\left(M, I_{1}\right) \rightarrow Y \rightarrow 0 \tag{143}
\end{equation*}
$$

for some $Y \in B$-mod. Now, the fact that M is an (A, R)-cogenerator implies that $\operatorname{Hom}_{A}\left(M, I_{i}\right) \in$ add $\operatorname{Hom}_{A}(M, M)$. The projective dimension of Y is at most two, and consequently, $\operatorname{Hom}_{A}(M, X)$ is B-projective. By projectivization, there exists $M_{0} \in \operatorname{add}_{A} M$ satisfying $\operatorname{Hom}_{A}(M, X) \simeq \operatorname{Hom}_{A}\left(M, M_{0}\right)$. Now, thanks to the exactness of $M \otimes_{B}$ - and the standard (A, R)-injective resolution of $X, M_{0} \simeq$ $M \otimes_{B} \operatorname{Hom}_{A}(M, X)$ is isomorphic to X.

7.2 Relative torsionless and reflexive modules

Given $M \in A$-mod, we say that M is (A, R)-torsionless if there exists a projective $P \in A$-proj and an (A, R)-monomorphism $M \rightarrow P$.

In FOY18 Fang, Kerner and Yamagata showed that the theory of dominant dimension over finite dimensional algebras over a field was related to the exactness of left adjoint of the double dual functor

$$
\begin{equation*}
(-)^{* *}: A-\operatorname{Mod} \rightarrow A-\operatorname{Mod}, M \mapsto \operatorname{Hom}_{A^{o p}}\left(\operatorname{Hom}_{A}(M, A), A\right) . \tag{144}
\end{equation*}
$$

For relative dominant dimension, the relevant functor to consider is the following functor

$$
\begin{equation*}
\mathcal{D}: A-\operatorname{Mod} \rightarrow \operatorname{Mod}-A, \quad M \mapsto \operatorname{Hom}_{A}(M, A) \otimes_{A} D A . \tag{145}
\end{equation*}
$$

Proposition 7.4. Let (A, P, V) be a RQF3 algebra with $\operatorname{domdim}(A, R) \geq 2$.
Define the natural transformation $\gamma: \mathcal{D} \rightarrow D$ with morphisms $\gamma_{X}: \operatorname{Hom}_{A}(X, A) \otimes_{A} D A \rightarrow D X$, given by $\gamma_{X}(f \otimes g)(x)=g(f(x)), f \otimes g \in \operatorname{Hom}_{A}(X, A) \otimes_{A} D A, x \in X$.

There exists a natural equivalence $\Sigma: \operatorname{Hom}_{A}(V, D-) \otimes_{C} V \rightarrow \mathcal{D}$ making the following diagram commutative:

$$
\begin{array}{cc}
\operatorname{Hom}_{A}(V, D X) \otimes_{C} V & \simeq \mathcal{D} X \\
D X & \left.\right|_{\downarrow}{ }^{\Phi_{X}}, \quad \forall X \in A \text {-Mod. } . \tag{146}\\
D X
\end{array}
$$

Proof. Let $X \in A$-mod. By assumption $\Phi_{A}: \operatorname{Hom}_{A}(V, D A) \otimes_{C} V \rightarrow D A$ is an isomorphism. Consider the C-isomorphism
$\kappa_{X}: \operatorname{Hom}_{A}(V, D X) \rightarrow \operatorname{Hom}_{R}\left(V \otimes_{A} X, R\right) \rightarrow \operatorname{Hom}_{A}(X, D V)$ given by $\kappa_{X}(g)(x)(v)=g(v)(x), g \in \operatorname{Hom}_{A}(V, D X)$, $x \in X, v \in V$. By Tensor-Hom adjunction the following composition of C-maps is a C-isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{A}(V, D X) \xrightarrow{\kappa_{X}} \operatorname{Hom}_{A}(X, D V) \xrightarrow{\operatorname{Hom}_{A}\left(X, w_{D V}\right)} \operatorname{Hom}_{A}\left(X, \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(D V, A), A\right)\right) \\
\operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(D V, A), \operatorname{Hom}_{A}(X, A)\right) \stackrel{\sigma_{\text {Hom }}(D V, A), X}{\longleftrightarrow} \underset{\rho_{X, \operatorname{Hom}_{A}(D V, A)}}{\longleftrightarrow} \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(D V, A) \otimes_{A} X, A\right)
\end{aligned} .
$$

Denote this isomorphism by $\Sigma_{X}^{(1)}$. By Tensor-Hom adjunction and since $D V \in A^{o p}$-proj the following map is an C-isomorphism
$\operatorname{Hom}_{A}(X, A) \otimes_{A} D V \xrightarrow{\operatorname{Hom}_{A}(X, A) \otimes_{A} w_{D V}} \operatorname{Hom}_{A}(X, A) \otimes_{A}(D V)^{* *} \xrightarrow{\psi_{\text {Hom }_{A}(D V, A)}} \operatorname{Hom}_{A}\left(\operatorname{Hom}_{A}(D V, A), \operatorname{Hom}_{A}(X, A)\right)$.
Denote this isomorphism by $\Sigma_{X}^{(2)}$, where $*$ denotes the dual functor $\operatorname{Hom}_{A}(-, A)$. Taking into account that $\Sigma_{X}^{(1)^{-1}}=\kappa_{X}^{-1} \circ \operatorname{Hom}_{A}\left(X, w_{D V}\right)^{-1} \circ \sigma_{X, \operatorname{Hom}_{A}(D V, A)} \circ \rho_{\operatorname{Hom}_{A}(D V, A), X}$ the following diagram is commutative:

Let Σ_{X} be the composition $\left(\operatorname{Hom}_{A}(X, A) \otimes_{A} \Phi_{A}\right)^{-1} \circ\left(\Sigma_{X}^{(2)} \otimes_{C} \mathrm{id}_{V}\right)^{-1} \circ \Sigma_{X}^{(1)} \otimes_{C} \mathrm{id}_{V}$. Since all these maps are functorial then Σ is a natural equivalence between the functors $\operatorname{Hom}_{A}(V, D-) \otimes_{C} V$ and \mathcal{D} which satisfies $\gamma_{X} \circ \Sigma_{X}=\Phi_{X}$ for all $X \in A$-mod.

Recall that $M \in A$-mod is called reflexive if the canonical A-map $M \rightarrow \operatorname{Hom}_{A^{o p}}\left(\operatorname{Hom}_{A}(M, A), A\right)$ is an isomorphism.

Theorem 7.5. Let (A, P, V) be a RQF3 algebra with $\operatorname{domim}(A, R) \geq 2$. Let $M \in A$ - $\bmod \cap R$-proj. The following assertions are equivalent.
(i) M is (A, R)-torsionless.
(ii) $\operatorname{domdim}_{(A, R)} M \geq 1$.
(iii) The map $\Phi_{M}: \operatorname{Hom}_{A}(V, D M) \otimes_{C} V \rightarrow D M$ is surjective.
(iv) The map $\gamma_{M}: \operatorname{Hom}_{A}(M, A) \otimes_{A} D A \rightarrow D M$ is surjective.

The following assertions are equivalent.
(a) M is reflexive over A and $\operatorname{Hom}_{A}(M, A) \otimes_{A} D A \in R$-proj.
(b) $\operatorname{domdim}_{(A, R)} M \geq 2$.
(c) The map $\Phi_{M}: \operatorname{Hom}_{A}(V, D M) \otimes_{C} V \rightarrow D M$ is bijective.
(d) The map $\gamma_{M}: \operatorname{Hom}_{A}(M, A) \otimes_{A} D A \rightarrow D M$ is bijective.

Proof. By Proposition 7.4 the implications $(i i i) \Leftrightarrow(i v)$ and $(c) \Leftrightarrow(d)$ hold. By relative Mueller characterization 3.23 , $(i i) \Leftrightarrow($ iii $)$ and $(b) \Leftrightarrow(c)$ follow. Assume that (i) holds. Since $\operatorname{domdim}(A, R) \geq 1$ there exists a projective (A, R)-injective module X such that $A \rightarrow X$ is an (A, R)-monomorphism. Using the (A, R)-monomorphism $M \rightarrow P \rightarrow A^{t} \rightarrow X^{t}(i i)$ follows. Assume that (ii) holds. Then, there exists an (A, R)-monomorphism of M into an A-projective (A, R)-injective module. In particular, M is (A, R)-torsionless.

It remains to show that (a) is equivalent to (d).
The diagram

is commutative. In fact, for $m \in M, f \in \operatorname{Hom}_{A}(M, A), g \in D A$

$$
\begin{aligned}
\kappa \tau_{M}(m)(f \otimes g)=g\left(\tau_{M}(m)(f)\right) & =g(f(m)) \\
D \gamma_{M} \circ w_{M}(m)(f \otimes g)=\operatorname{Hom}_{R}\left(\gamma_{M}, R\right) w_{M}(m)(f \otimes g)=w_{M}(m) \circ \gamma_{M}(f \otimes g) & =\gamma_{M}(f \otimes g)(m)=g(f(m))
\end{aligned}
$$

Assume that (a) holds. Then, τ_{M} is an isomorphism. So, by the diagram $148 D \gamma_{M}$ is an isomorphism. Since $\operatorname{Hom}_{A}(M, A) \otimes_{A} D A \in R$-proj, γ_{M} is an isomorphism. Assume now that (d) holds. As $D M \in R$-proj, it follows that $\operatorname{Hom}_{A}(M, A) \otimes_{A} D A \in R$-proj. Also, $D \gamma_{M}$ is an isomorphism. By the diagram 148, τ_{M} is an isomorphism. So, M is reflexive over A.

7.3 Relative Morita algebras

We shall now introduce a generalization of Morita algebras introduced in KY13 to algebras over Noetherian rings. This also generalizes [Cru21, Theorem 11] and [FHK21, Proposition 2.9].

Theorem 7.6. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The following assertions are equivalent.
(a) $(A, P, D P)$ is a RQF3 algebra so that $\operatorname{dom} \operatorname{dim}(A, R) \geq 2$ and the restriction of the Nakayama functor $D A \otimes_{A}-$: add $P \rightarrow$ add P is well defined;
(b) $(A, P, D P)$ is a RQF3 algebra so that $\operatorname{domdim}(A, R) \geq 2$ and $\operatorname{add}_{A} D A \otimes_{A} P=\operatorname{add}_{A} P$.
(c) A is the endomorphism algebra of a generator $M \in B$-mod $\cap R$-proj satisfying $D M \otimes_{B} M \in R$-proj over a relative self-injective R-algebra B, where $B \in R$-proj.
(a') $(A, P, D P)$ is a RQF3 algebra so that $\operatorname{domdim}(A, R) \geq 2$ and the restriction of the Nakayama functor $-\otimes_{A} D A$: add $D P \rightarrow$ add $D P$ is well defined;
(b') $(A, P, D P)$ is a RQF3 algebra so that $\operatorname{domdim}(A, R) \geq 2$ and $\operatorname{add}_{A} D P \otimes_{A} D A=\operatorname{add}_{A} D P$.

Proof. The argument is essentially the same as presented in Cru21, Theorem 11] once we replace dominant dimension by relative dominant dimension. It is enough to prove $(a) \Longrightarrow(c) \Longrightarrow(b)$ since $(b) \Longrightarrow(a)$ is clear and the implications $\left(b^{\prime}\right) \Longrightarrow\left(a^{\prime}\right) \Longrightarrow(c) \Longrightarrow\left(b^{\prime}\right)$ are analogous.

Assume that (a) holds. By relative Morita-Tachikawa correspondence (see Theorem4.1) $P \otimes_{B} D P \in$ R-proj, $B=\operatorname{End}_{A}(P)^{o p}=\operatorname{End}_{A}(D P)$ and $A \simeq \operatorname{End}_{B}(P) \simeq \operatorname{End}_{B}(D P)^{o p}$. It remains to show that B is relative self-injective. But this follows immediately from observing that

$$
\begin{equation*}
B=\operatorname{Hom}_{A}(P, P) \simeq \operatorname{Hom}_{A}(P, A) \otimes_{A} P \simeq D\left(D A \otimes_{A} P\right) \otimes_{A} P \in \operatorname{add} D P \otimes_{A} P=\operatorname{add} D B \tag{149}
\end{equation*}
$$

Hence, B is (B, R)-injective.
Assume that (c) holds. By the relative Morita-Tachikawa correspondence, domdim $(A, R) \geq 2$ so that $(A, D M, M)$ is RQF3 and $A=\operatorname{End}_{B}(M)^{o p}$. Moreover,

$$
\begin{equation*}
D A \otimes_{A} D M \simeq D M \otimes_{B} M \otimes_{A} D M \simeq D M \otimes_{B} D B \tag{150}
\end{equation*}
$$

Since B is a relative self-injective algebra $D B$ is a B-progenerator. Hence, $\operatorname{add}_{A} D M \otimes_{B} D B=\operatorname{add}_{A} D M$. This completes the proof.

The pair (A, P) (or $(A, D P)$ if one prefers to work with right modules) is called a relative Morita R-algebra if it satisfies one of the conditions of Theorem 7.6 .

Using Theorem 7.6(c), we see that relative Morita algebras generalize relative self-injective algebras.

7.4 Relative Gendo-symmetric algebras

Definition 7.7. Let B be a projective Noetherian algebra over a commutative Noetherian ring $R . B$ is said to be relative symmetric R-algebra if there exists a (B, B)-bimodule isomorphism $D B \simeq B$.

Using the proof of Proposition 3.11 , we see that group algebras $R G$ are relative symmetric R-algebras for any commutative Noetherian ring R and finite groups G. We refer to Yam96 for the study of symmetric finite dimensional algebras.
Theorem 7.8. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The following assertions are equivalent.
(a) $\operatorname{domdim}(A, R) \geq 2$ and $V \simeq V \otimes_{A} D A$ as $\left(\operatorname{End}_{A}(V), A\right)$-bimodules where V is a projective (A, R) -injective-strongly faithful right module.
(b) domdim $(A, R) \geq 2$ and $P \simeq D A \otimes_{A} P$ as $\left(A, \operatorname{End}_{A}(P)^{o p}\right)$-bimodules where P is a projective (A, R) -injective-strongly faithful left module.
(c) A is the endomorphism algebra of a generator $M \in B$ - $\bmod \cap R$-proj satisfying $D M \otimes_{B} M \in R$-proj over a relative symmetric R-algebra B.
Proof. Assume that (a) holds. Let $B=\operatorname{End}_{A}(V)$. By relative Morita-Tachikawa correspondence 4.1, V is a left B-generator satisfying $D V \otimes_{B} V \in R$-proj and $A=\operatorname{End}_{B}(V)^{o p}$. In particular $D A \simeq D V \otimes_{B} V$ as (A, A)-bimodules. Furthermore, $D V \simeq D\left(V \otimes_{A} D A\right) \simeq \operatorname{Hom}_{A}(V, A)$ as (A, B)-bimodules. Thus, as (B, B)-bimodules

$$
\begin{equation*}
D B \simeq V \otimes_{A} D V \simeq V \otimes_{A} \operatorname{Hom}_{A}(V, A) \simeq \operatorname{Hom}_{A}(V, V) \simeq B \tag{151}
\end{equation*}
$$

Hence B is a relative symmetric R-algebra. So, (c) follows.
Conversely, assume that (c) holds. Every generator over a relative symmetric algebra is a generator relative cogenerator. By relative Morita-Tachikawa correspondence 4.1, $A=\operatorname{End}_{B}(M)^{o p}$ has $\operatorname{dom} \operatorname{dim}(A, R) \geq 2$ and M is a projective (A, R)-injective-strongly faithful right module. In particular, $D A \simeq D M \otimes_{B} M$ as (A, A)-bimodules. Moreover, as (B, A)-bimodules

$$
M \otimes_{A} D A \simeq M \otimes_{A} D M \otimes_{B} M \simeq D B \otimes_{B} M \simeq B \otimes_{B} M \simeq M
$$

Analogously, one can show the equivalence between (b) and (c)

By a relative gendo-symmetric R-algebra we mean a pair (A, V) satisfying (a) and (c) of Theorem 7.8 or a pair (A, P) satisfying (b) and (c) of Theorem 7.8 .

Proposition 7.9. Let (A, V) be a relative gendo-symmetric R-algebra. Then,
(i) $D A \otimes_{A} D A \simeq D A$ as (A, A)-bimodules.
(ii) $D V \simeq D A \otimes_{A} D V$ as $\left(A, \operatorname{End}_{A}(V)\right)$-bimodules.

Proof. Let $B=\operatorname{End}_{A}(V)$. We can identify as (A, A)-bimodules

$$
D A \otimes_{A} D A \simeq D V \otimes_{B} V \otimes_{A} D V \otimes_{B} V \simeq D V \otimes_{B} D B \otimes_{B} V \simeq D V \otimes_{B} B \otimes_{B} V \simeq D V \otimes_{B} V \simeq D A
$$

So, (i) follows. By assumption, $V \simeq V \otimes_{A} D A$ as (B, A)-bimodules. Hence, as (A, B)-bimodules

$$
\begin{equation*}
D V \simeq D\left(V \otimes_{A} D A\right) \simeq \operatorname{Hom}_{A}(V, D D A) \simeq \operatorname{Hom}_{A}(V, A) \tag{152}
\end{equation*}
$$

In particular, there exists an (A, B)-bimodule isomorphism

$$
D A \otimes_{A} D V \simeq D A \otimes_{A} \operatorname{Hom}_{A}(V, A) \simeq \operatorname{Hom}_{A}(V, D A) \simeq \operatorname{Hom}_{R}\left(V \otimes_{A} A, R\right) \simeq D V
$$

Over fields, these class of algebras were introduced by Fang and Koenig in FK11a to give a homological characterization of a class of algebras that generalize Schur algebras and the blocks of the category \mathcal{O}.

Proposition 7.9 allows us to construct a comultiplication on A in the same fashion as in [FK16]. The advantage here is of course that the ground ring is any commutative Noetherian ring instead of a field.

A question that arises in this setup is whether the condition (i) in Proposition 7.9 is enough to deduce that there exists $V \in \operatorname{proj}-A$ such that (A, V) is a relative gendo-symmetric R-algebra. The difficulty lies in fact in the construction of V. It is also unclear for the author if an algebra being symmetric can be characterized in terms of closed points.

7.5 Classical Schur algebras

A classical reference for the study of Schur algebras (over infinite fields) is Gre07.
Let R be a commutative ring with identity. Fix natural numbers n, d. The symmetric group on d letters S_{d} acts by place permutation on the d-fold tensor product $\left(R^{n}\right)^{\otimes d}$, that is,

$$
\left(v_{1} \otimes \cdots \otimes v_{d}\right) \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}, \sigma \in S_{d}, v_{i} \in R^{n}
$$

We will write $V_{R}^{\otimes d}$ instead of $\left(R^{n}\right)^{\otimes d}$ or simply $V^{\otimes d}$ when the ground ring is well understood. In particular, $V^{\otimes d}$ is a right module over the group algebra $R S_{d}$.
Definition 7.10. Gre07 The subalgebra $\operatorname{End}_{R S_{d}}\left(V^{\otimes^{d}}\right)$ of the endomorphism algebra $\operatorname{End}_{R}\left(V^{\otimes d}\right)$ is called the Schur algebra. We will denote it by $S_{R}(n, d)$.

We recall some facts about these algebras.
Let $I(n, d)$ be the set of maps $i:\{1, \ldots, d\} \rightarrow\{1, \ldots, n\}$. We write $i(a)=i_{a}$. We can associate to $I(n, d)$ a right S_{d}-action by place permutation. In the same way, S_{d} acts on $I(n, d) \times I(n, d)$, by setting:

$$
\begin{equation*}
(i, j) \sigma=(i \sigma, j \sigma), \quad \forall i, j \in I(n, d), \forall \sigma \in S_{d} \tag{153}
\end{equation*}
$$

We will write $(i, j) \sim(f, g)$ if (i, j) and (f, g) belong to the same S_{d}-orbit. Then, $S_{R}(n, d)$ has a basis over $R\left\{\xi_{i, j} \mid(i, j) \in I(n, d) \times I(n, d)\right\}$ satisfying

$$
\begin{equation*}
\xi_{i, j}\left(e_{s_{1}} \otimes \cdots \otimes e_{s_{d}}\right)=\sum_{\substack{l \in I(n, d) \\(l, s) \sim(i, j)}} e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \tag{154}
\end{equation*}
$$

for a given basis $\left\{e_{s_{1}} \otimes \cdots \otimes e_{s_{d}}: 1 \leq s_{1}, \ldots, s_{d} \leq n\right\}$ of $V^{\otimes d}$. In particular, $\xi_{i, j}=\xi_{f, g}$ if and only if $(i, j) \sim(f, g)$.

An immediate consequence of the existence of an R-basis for $S_{R}(n, d)$ satisfying 154 is the existence of a base change property

$$
\begin{equation*}
R \otimes_{\mathbb{Z}} S_{\mathbb{Z}}(n, d) \simeq S_{R}(n, d) \tag{155}
\end{equation*}
$$

It also follows that $R \otimes_{\mathbb{Z}} V_{\mathbb{Z}}^{\otimes d} \simeq V_{R}^{\otimes d}$ as $S_{R}(n, d)$-modules.
We will now focus on the case $n \geq d$. In this case,

$$
\begin{equation*}
V^{\otimes d} \simeq S_{R}(n, d) \xi_{(1, \ldots, d),(1, \ldots, d)}, \quad D V^{\otimes d} \simeq \xi_{(1, \ldots, d),(1, \ldots, d)} S_{R}(n, d) \tag{156}
\end{equation*}
$$

Hence, $V^{\otimes d}$ is an $S_{R}(n, d)$-projective $\left(S_{R}(n, d), R\right)$-injective module.
Our aim is to compute the relative dominant dimension of $S_{R}(n, d)$ extending the results of Fang and Koenig [FK11b contained in the following Theorem.

Theorem 7.11. FK11b, Theorem 5.1] Let K be a field.

$$
\operatorname{dom\operatorname {dim}} S_{K}(n, d)= \begin{cases}2(\operatorname{char} K-1) & \text { if } d \geq \operatorname{char} K>0 \tag{157}\\ +\infty, & \text { otherwise }\end{cases}
$$

The dominant dimension of the Schur algebra $S_{K}(n, d)$ is always even because the Schur algebra $S_{K}(n, d)$ admits an involution fixing a complete set of primitive orthogonal idempotents.

In the following, we will show that we can compute the dominant dimension of $S_{R}(n, d)$ by knowing the invertible elements of R, denoted by $U(R)$.

Theorem 7.12. Let R be a commutative Noetherian ring. If $n \geq d$, then $\left(S_{R}(n, d), V^{\otimes d}\right)$ is a relative gendo-symmetric R-algebra and

$$
\begin{equation*}
\operatorname{domdim}\left(S_{R}(n, d), R\right)=\inf \left\{2 k \in \mathbb{N} \mid(k+1) \cdot 1_{R} \notin U(R), k<d\right\} \geq 2 \tag{158}
\end{equation*}
$$

Proof. $V_{K}^{\otimes d}$ is a projective-injective faithful $S_{K}(n, d)$ module for every field. By Proposition 6.4, $\left(S_{R}(n, d), V^{\otimes d}, D V^{\otimes d}\right)$ is a RQF3 algebra. Denote by $\operatorname{MaxSpec}(R)$ the set of maximal ideals of \mathfrak{m}. By Theorem 6.13.

$$
\begin{align*}
\operatorname{domdim}\left(S_{R}(n, d), R\right) & =\inf \left\{\operatorname{domdim} S_{R}(n, d) \otimes_{R} R(\mathfrak{m}) \mid \mathfrak{m} \in \operatorname{MaxSpec}(R)\right\} \tag{159}\\
& =\inf \left\{\operatorname{domdim} S_{R(\mathfrak{m})}(n, d) \mid \mathfrak{m} \in \operatorname{MaxSpec}(R)\right\} \geq 2 \tag{160}
\end{align*}
$$

By relative Morita-Tachikawa correspondence, $V^{\otimes d}$ is a generator of $R S_{d}$ satisfying $V^{\otimes d} \otimes_{R S_{d}} D V^{\otimes d} \in$ R-proj. Therefore, $\left(S_{R}(n, d), V^{\otimes d}\right)$ is a relative gendo-symmetric R-algebra because $R S_{d}$ is a relative symmetric R-algebra.

Let $k \in \mathbb{N}$ such that $(k+1) 1_{R} \notin U(R)$ and $k<d$. Then, $(k+1) 1_{R} \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R. In particular, char $R(\mathfrak{m})$ is positive and it is less or equal to $k+1 \leq d$. Hence, $\operatorname{domdim} S_{R(\mathfrak{m})}(n, d) \leq 2 k$, for some maximal ideal \mathfrak{m} of R. This shows that

$$
\begin{equation*}
\operatorname{domdim}\left(S_{R}(n, d), R\right) \leq \inf \left\{2 k \in \mathbb{N} \mid(k+1) \cdot 1_{R} \notin U(R), k<d\right\} \tag{161}
\end{equation*}
$$

In particular, if $\operatorname{domdim}\left(S_{R}(n, d), R\right)=+\infty$ there is nothing more to prove.
Assume now that domdim $\left(S_{R}(n, d), R\right)=l \geq 2$. So, there exists $\mathfrak{m} \in \operatorname{MaxSpec}(R)$ such that

$$
\begin{equation*}
2(\operatorname{char} R(\mathfrak{m})-1)=l, \quad \text { and } \quad \operatorname{char} R(\mathfrak{m}) \leq d \tag{162}
\end{equation*}
$$

In particular, the image of char $R(\mathfrak{m}) 1_{R}$ in $R(\mathfrak{m})$ is zero and so char $R(\mathfrak{m}) 1_{R} \in \mathfrak{m}$. Hence, char $R(\mathfrak{m}) 1_{R} \notin$ $U(R)$. Therefore,

$$
\begin{equation*}
l \in\left\{2 k \in \mathbb{N} \mid(k+1) 1_{R} \notin U(R), k<d\right\} \tag{163}
\end{equation*}
$$

This finishes the proof.
Once again, we see that the invertible elements of the ground ring determine the quality of a double centralizer property. In Cru19, a ring having sufficiently many invertible elements under some mild assumptions was a sufficient condition for Schur-Weyl duality to hold.

In Theorem 7.12, we saw that $V^{\otimes d}$ is an $\left(S_{R}(n, d), R\right)$-strongly faithful module. In general for Noetherian algebras, it is difficult to prove directly that a module is strongly faithful and whenever possible we always prefer to show this property using change of rings techniques. However, it is not difficult to show directly that $V^{\otimes d}$ is strongly faithful. This is the aim of the next example.

Example 7.13. Let $\left\{e_{s_{1}} \otimes \cdots \otimes e_{s_{d}}: 1 \leq s_{1}, \ldots, s_{d} \leq n\right\}$ be an R-basis of $V^{\otimes d}$. Choose Λ to be a set of representatives of S_{d}-orbits on $I(n, d) \times I(n, d)$. Define the R-map $v \in \operatorname{Hom}_{R}\left(S_{R}(n, d), V^{\otimes d^{t}}\right)$, satisfying

$$
\begin{equation*}
v(\varphi)=\sum_{(i, j) \in \Lambda} \kappa_{i, j}\left(\varphi\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right)\right), \quad \varphi \in S_{R}(n, d) \tag{164}
\end{equation*}
$$

with $\kappa_{i, j}$ and $\pi_{i, j},(i, j) \in \Lambda$, being the inclusion and projection mappings of V^{\otimes} into the direct sum $\left(V^{\otimes d}\right)^{t}$ as $S_{R}(n, d)$-modules, respectively, where $t=\binom{n^{2}+d-1}{d}$. Observe that

$$
\begin{equation*}
v(\eta \varphi)=\sum_{(i, j) \in \Lambda} \kappa_{i, j}\left(\eta \varphi\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right)\right)=\sum_{(i, j) \in \Lambda} \eta \kappa_{i, j} \varphi\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right)=\eta v(\varphi), \varphi, \eta \in S_{R}(n, d) \tag{165}
\end{equation*}
$$

Thus, $\left.v \in \operatorname{Hom}_{S_{R}(n, d)}\left(S_{R}(n, d), V^{\otimes d^{t}}\right)\right)$. For each $(i, j) \in \Lambda$, define $f_{i, j} \in \operatorname{Hom}_{R}\left(V^{\otimes d}, S_{R}(n, d)\right)$ satisfying

$$
f_{i, j}\left(e_{s_{1}} \otimes \cdots \otimes e_{s_{d}}\right)= \begin{cases}\xi_{i, j} & \text { if }\left(s_{1}, \ldots, s_{d}\right)=i \tag{166}\\ 0, & \text { otherwise }\end{cases}
$$

Finally, denote by ϵ the R-map $\sum_{(i, j) \in \Lambda} f_{i, j} \circ \pi_{i, j} \in \operatorname{Hom}_{R}\left(\left(V^{\otimes d}\right)^{t}, S_{R}(n, d)\right)$. Then, the following holds,

$$
\begin{align*}
\epsilon \circ v\left(\xi_{f, g}\right) & =\epsilon\left(\sum_{(i, j) \in \Lambda} \kappa_{i, j} \xi_{f, g}\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right)\right)=\sum_{(t, u) \in \Lambda} \sum_{(i, j) \in \Lambda} f_{t, u} \pi_{t, u} \kappa_{i, j} \xi_{f, g}\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right) \tag{167}\\
& =\sum_{(i, j) \in \Lambda} f_{i, j} \xi_{f, g}\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{d}}\right)=\sum_{(i, j) \in \Lambda} f_{i, j}\left(\sum_{\substack{l \in I(n, d) \\
(l, j) \sim(f, g)}} e_{l_{1}} \otimes \cdots \otimes e_{l_{d}}\right) \tag{168}\\
& =\sum_{(i, j) \in \Lambda} \sum_{\substack{l \in I(n, d) \\
(l, j) \sim(f, g)}} \mathbb{1}_{\{i\}}(l) \xi_{i, j}=\sum_{\substack{(i, j) \in \Lambda \\
(i, j) \sim(f, g)}} \xi_{i, j}=\xi_{f, g} . \tag{169}
\end{align*}
$$

Therefore, v is an $\left(S_{R}(n, d), R\right)$-monomorphism.

$7.6 \quad q$-Schur algebras

The Hecke algebra of the symmetric group (usually called the Iwahori-Hecke algebra) is obtained by a small perturbation q on the group algebra of symmetric group. By a small perturbation q we mean
replacing the identity of the group algebra in some of its defining relations by a non-trivial root of unity. Although, one usually is more general and defines it for an invertible element q. Usually, the name quantum is referred to q being a small perturbation.

Let R be a commutative ring with identity. Fix natural numbers n, d. Let u be an invertible element of R and put $q=u^{-2}$. The Iwahori-Hecke algebra $H_{R, q}(d)$ is the R-algebra with basis $\left\{T_{\sigma}: \sigma \in S_{d}\right\}$ satisfying the relations

$$
T_{\sigma} T_{s}= \begin{cases}T_{\sigma s}, & \text { if } l(\sigma s)=l(\sigma)+1 \tag{170}\\ \left(u-u^{-1}\right) T_{\sigma}+T_{\sigma s}, & \text { if } l(\sigma s)=l(\sigma)-1\end{cases}
$$

where $s \in S:=\{(1,2),(2,3), \cdots,(d-1, d)\}$ is a set of transpositions and l is the length function, that is, $l(\sigma), \sigma \in S_{d}$, is the minimum number of simple transpositions belonging to S needed to write σ.

There are many ways to define Hecke algebras. Here, we are following the definition of Hecke algebras according to Parshall-Wang PW91] (but we use u instead of q and q instead of h). In Mat99], they use a different basis for $H_{R, q}(d)$ which is the same as Definition (11.3a) of PW91. We would also like to point out that $\mathcal{H}_{R, q}$ in Definition 4.4.1 of DD91 is exactly $H_{R, q}(d)$ in our notation.

Due to the relations (170), $T_{s}, s \in S$, generates as algebra $H_{R, q}(d)$.
The Iwahori-Hecke algebra $H_{R, q}(d)$ admits a base change property.

$$
\begin{equation*}
H_{R, q}(d) \simeq R \otimes_{\mathbb{Z}\left[u, u^{-1}\right]} H_{\mathbb{Z}\left[u, u^{-1}\right], u^{-2}}(d) \tag{171}
\end{equation*}
$$

Under this isomorphism of R-algebras $1_{R} \otimes_{\mathbb{Z}\left[u, u^{-1}\right]} T_{\sigma}$ is mapped to $T_{\sigma} \in H_{R, q}(d)$.
We can regard $V^{\otimes d}$ as right $H_{R, q}(d)$-module by imposing to an R-basis $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \mid i \in I(n, d)\right\}$ of $V^{\otimes d}$,

$$
e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \cdot T_{s}= \begin{cases}e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \cdot s & \text { if } i_{t}<i_{t+1} \\ u e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} & \text { if } i_{t}=i_{t+1}, \quad s=(t, t+1) \in S \\ \left(u-u^{-1}\right) e_{i_{1}} \otimes \cdots \otimes e_{i_{d}}+e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \cdot s & \text { if } i_{t}>i_{t+1}\end{cases}
$$

By considering $q=1$, we recover the action on $V^{\otimes d}$ of the symmetric group by place permutation.
Definition 7.14. The subalgebra $\operatorname{End}_{H_{R, q}(d)}\left(V^{\otimes^{d}}\right)$ of the endomorphism algebra $\operatorname{End}_{R}\left(V^{\otimes d}\right)$ is called the q-Schur algebra. We will denote it by $S_{R, q}(n, d)$.

The q-Schur algebras were introduced by Dipper and James DJ91, DJ89.
By [Du92, 2.d] (see also DD91, Lemma 4.4.3]) $S_{R, q}(n, d)=S_{R, u^{-2}}(n, d)$ is isomorphic to the q-Schur algebra of Dipper and James DJ91.

It is now a good opportunity to exhibit an R-basis of $V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}$. By dualizing such R-basis we will obtain an R-basis for $S_{R, q}(n, d)$. Note, once more, that in general if $\operatorname{End}_{B}(M)$ has an R-basis nothing can be said about $D M \otimes_{B} M, M \in B-\bmod$.
 with action

$$
T_{s} \cdot e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{d}}^{*}=\left\{\begin{array}{ll}
s \cdot e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{d}}^{*} & \text { if } i_{t}<i_{t+1} \\
u e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{d}}^{*} & \text { if } i_{t}=i_{t+1}, \quad s=(t, t+1) \in S \\
\left(u-u^{-1}\right) e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{d}}^{*}+s \cdot e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{d}}^{*} & \text { if } i_{t}>i_{t+1}
\end{array} 1 \leq t<d\right.
$$

We can associate to $I(n, d) \times I(n, d)$ the lexicographical order. Each S_{d}-orbit of $I(n, d) \times I(n, d)$ has a representative (i, j) satisfying $\left(i_{1}, j_{1}\right) \leq \cdots \leq\left(i_{d}, j_{d}\right)$.

Proposition 7.16. $V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}$ is a free R-module with basis

$$
\begin{equation*}
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \otimes_{H_{R, q}(d)} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*}: i, j \in I(n, d),\left(i_{1}, j_{1}\right) \leq \cdots \leq\left(i_{d}, j_{d}\right)\right\} . \tag{173}
\end{equation*}
$$

Proof. Since $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \mid i \in I(n, d)\right\}$ is an R-basis of $V^{\otimes d}$ and $\left\{e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} \mid j \in I(n, d)\right\}$ is an R-basis of $D V^{\otimes d}$ the set $\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \otimes_{H_{R, q}(d)} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} \mid i, j \in I(n, d)\right\}$ generate (over R) $V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}$.

Denote by Λ the set

$$
\begin{equation*}
\Lambda:=\left\{(i, j) \in I(n, d) \times I(n, d):\left(i_{1}, j_{1}\right) \leq \cdots \leq\left(i_{d}, j_{d}\right)\right\} \tag{174}
\end{equation*}
$$

Let $(l, s) \in I(n, d) \times I(n, d)$. Assume that $(l, s) \notin \Lambda$. Then, there exists $1 \leq k<d$ such that $\left(l_{k}, s_{k}\right) \notin$ $\left(l_{k+1}, s_{k+1}\right)$. Hence, either $l_{k}>l_{k+1}$ or $l_{k}=l_{k+1}$ and $s_{k}>s_{k+1}$. Assume that $l_{k}>l_{k+1}$. Take $i=l \cdot(k, k+1)$ and $\omega=(k, k+1)$. Then, $i_{k}<i_{k+1}$ and

$$
\begin{equation*}
e_{l_{1}} \otimes \cdots \otimes e_{l_{d}}=\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{d}}\right) \cdot(k, k+1)=e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \cdot T_{\omega} . \tag{175}
\end{equation*}
$$

Hence,

$$
\begin{align*}
e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*} & =e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \cdot T_{\omega} \otimes_{H_{R, q}(d)} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*} \tag{176}\\
& =e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \otimes_{H_{R, q}(d)} T_{\omega} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*} \tag{177}
\end{align*}
$$

Therefore, we can write $e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*}$ as a linear combination of elements $e_{i} \otimes_{H_{R, q}(d)} e_{f}^{*}$ where $i_{1} \leq \ldots i_{k} \leq i_{k+1}, i, f \in I(n, d)$. Now, assume that $l_{k}=l_{k+1}$ and $s_{k}>s_{k+1}$ for some k. Put $j=s \cdot \omega, \omega=(k, k+1)$. Then, $j_{k}<j_{k+1}$ and

$$
\begin{align*}
e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*} & =e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} \omega e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} \tag{178}\\
& =e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} T_{\omega} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} \tag{179}\\
& =e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} T_{\omega} \otimes_{H_{R, q}(d)} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} \tag{180}\\
& =u_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R, q}(d)} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*} . \tag{181}
\end{align*}
$$

So, we can order the elements (for example using Bubble sort) $(l, s) \in I(n, d) \times I(n, d)$ into $(i, j) \in$ $I(n, d) \times I(n, d)$ with $(i, j) \in \Lambda$ and we obtain that each element $e_{l_{1}} \otimes \cdots \otimes e_{l_{d}} \otimes_{H_{R_{, q}(d)}} e_{s_{1}}^{*} \otimes \cdots \otimes e_{s_{d}}^{*}$, $s, l \in I(n, d)$ can be written as a linear combination of elements $e_{i_{1}} \otimes \cdots \otimes e_{i_{d}} \otimes_{H_{R, q}(d)} e_{j_{1}}^{*} \otimes \cdots \otimes e_{j_{d}}^{*}, i, j \in \Lambda$. Moreover, the coefficients appearing in this linear combination belong to the image of $\mathbb{Z}\left[u, u^{-1}\right] \rightarrow R$. Denote these coefficients by $p_{i, j}^{l, s}(u)$. We claim that our desired set is linearly independent. For each $(i, j) \in \Lambda$, we define the map $\psi_{i, j}: V^{\otimes d} \times D V^{\otimes d} \rightarrow R$ satisfying

$$
\begin{equation*}
\psi_{i, j}=\sum_{l, s \in I(n, d)} p_{i, j}^{l, s}(u)\left(e_{l}, e_{s}^{*}\right)^{*}, \tag{182}
\end{equation*}
$$

where $\left(e_{l}, e_{s}^{*}\right)^{*}$ is the dual element of $\left(e_{l}, e_{s}^{*}\right)$. So, this map is R-bilinear. By construction, the coefficients $p_{i, j}^{l, s}(u)$ satisfy the following relations: For each $\omega=(k, k+1)$, we have

$$
\begin{cases}p_{i,}^{l, s \omega}(u)=u p_{i, j}^{l \omega, s}(u) & \text { if } l_{t}=l_{t+1}, s_{t}<s_{t+1} \tag{183}\\ p_{i, j}^{l \omega, s}(u)=p_{i, j}^{l, s \omega}(u) & \text { if } l_{t}<l_{t+1}, s_{t}<s_{t+1} \\ p_{i, j}^{l \omega, s}(u)=u u_{i, j}^{l, s}(u) & \text { if } l_{t}<l_{t+1}, s_{t}=s_{t+1} \\ p_{i, j}^{l \omega, s}(u)=\left(u-u^{-1}\right) p_{i, j}^{l, s}(u)+p_{i, j}^{l, s \omega}(u) & \text { if } l_{t}<l_{t+1}, s_{t}>s_{t+1}\end{cases}
$$

We are now ready to check that $\psi_{i, j}$ satisfies the relation $\psi_{i, j}\left(e_{f} T_{\omega}, e_{g}^{*}\right)=\psi_{i, j}\left(e_{f}, T_{\omega} e_{g}^{*}\right)$ for all $f, g \in$ $I(n, d)$. For $f, g \in I(n, d)$ and $\omega=(t, t+1)$,

$$
\begin{align*}
\psi\left(e_{f} T_{\omega}, e_{g}^{*}\right)= & \begin{cases}\sum_{l, s \in I(n, d)} p_{i, j}^{l, s}(u) \mathbb{1}_{\{(f \omega, g)\}}(l, s) & \text { if } f_{t}<f_{t+1} \\
\sum_{l, s \in I(n, d)} p_{i, j}^{l, s}(u) \mathbb{1}_{\{(f, g)\}}(l, s) u & \text { if } f_{t}=f_{t+1} \\
\sum_{l, s \in I(n, d)}^{l, s}(u) \mathbb{1}_{\{(f, g)\}}(l, s)\left(u-u^{-1}\right)+p_{i, j}^{l, s}(u) \mathbb{1}_{\{(f \omega, g)\}}(l, s) & \text { if } f_{t}>f_{t+1}\end{cases} \tag{184}\\
& = \begin{cases}p_{i, j}^{f, g}(u) & \text { if } f_{t}<f_{t+1} \\
u p_{i, g}^{f, g}(u) & \text { if } f_{t}=f_{t+1} \\
\left(u-u^{-1}\right) p_{i, j}^{f, g}(u)+p_{i, j}^{f \omega, g}(u) & \text { if } f_{t}>f_{t+1}\end{cases} \tag{185}
\end{align*}
$$

On the other hand,

$$
\psi\left(e_{f}, T_{\omega} e_{g}^{*}\right)= \begin{cases}p_{i, j}^{f, g \omega}(u) & \text { if } g_{t}<g_{t+1} \tag{186}\\ u p_{i, j}^{f, g}(u) & \text { if } g_{t}=g_{t+1} \\ \left(u-u^{-1}\right) p_{i, j}^{f, g}(u)+p_{i, j}^{f, g \omega}(u) & \text { if } g_{t}>g_{t+1}\end{cases}
$$

Using the relations 183 we obtain our claim. Hence, $\psi_{i, j}$ induces a unique map $\psi_{i, j}^{\prime}: V^{\otimes d} \otimes_{H_{R, q}(d)}$ $D V^{\otimes d} \rightarrow R$, satisfying

$$
\begin{equation*}
\psi_{i, j}^{\prime}\left(e_{f} \otimes_{H_{R, q}(d)} e_{g}^{*}\right)=p_{i, j}^{f, g}(u), \quad f, g \in I(n, d) \tag{187}
\end{equation*}
$$

In particular $\psi_{i, j}^{\prime}\left(e_{i} \otimes_{H_{R, q}(d)} e_{j}^{*}\right)=1$ and $\psi_{i, j}^{\prime}\left(e_{f} \otimes_{H_{R, q}(d)} e_{g}^{*}\right)=0$ for all $(f, g) \in \Lambda$ distinct from (i, j). This shows that 173 is an R-basis of $V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}$.

The dual elements of $e_{i} \otimes_{H_{R, q}(d)} e_{j}^{*},(i, j) \in \Lambda$, denoted by $\xi_{j, i} \in D\left(V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}\right) \simeq S_{R, q}(n, d)$, form an R-basis of the q-Schur algebra. Moreover, (by a tensor-hom adjunction argument)

$$
\begin{equation*}
e_{g}^{*}\left(\xi_{j, i}\left(e_{f}\right)\right)=\psi_{i, j}^{\prime}\left(e_{f} \otimes_{H_{R, q}(d)} e_{g}^{*}\right)=p_{i, j}^{f, g}(u), \quad f, g \in I(n, d) \tag{188}
\end{equation*}
$$

Thus, we can write

$$
\begin{equation*}
\xi_{j, i}\left(e_{f}\right)=\sum_{f \in I(n, d)} p_{i, j}^{f, g}(u) e_{g}, \quad \forall f \in I(n, d) \tag{189}
\end{equation*}
$$

Using our approach to a basis of the q-Schur algebra it is clear that the q-Schur algebra admits a base change property.
Lemma 7.17. Let R be a commutative ring with an invertible element u. Fix $q=u^{-2}$. For any commutative R-algebra S,

$$
\begin{align*}
S_{R, q}(n, d) \simeq R \otimes_{\mathbb{Z}\left[u, u^{-1}\right]} & S_{\mathbb{Z}\left[u, u^{-1}\right], u^{-2}}(n, d) \tag{190}\\
S_{S, q 1_{S}}(n, d) & \simeq S \otimes_{R} S_{R, q}(n, d) \tag{191}
\end{align*}
$$

Proof. Since $V^{\otimes d} \otimes_{H_{R, q}(d)} D V^{\otimes d}$ is a free R-module and $H_{R, q}(d)$ admit a base change property the q-Schur algebra $S_{R, q}(n, d)$ has also a base change property:

$$
\begin{equation*}
S_{S, q 1_{S}}(n, d) \simeq S \otimes_{R} S_{R, q}(n, d) \tag{192}
\end{equation*}
$$

The first equation follows by fixing $R=\mathbb{Z}\left[u, u^{-1}\right]$.

We will now focus on the case $n \geq d$. There are isomorphisms,

$$
\begin{equation*}
V^{\otimes d} \simeq S_{R, q}(n, d) \xi_{(1, \ldots, d),(1, \ldots, d)}, \quad D V^{\otimes d} \simeq \xi_{(1, \ldots, d),(1, \ldots, d)} S_{R, q}(n, d) \tag{193}
\end{equation*}
$$

Hence, $V^{\otimes d}$ is an $S_{R, q}(n, d)$-projective $\left(S_{R, q}(n, d), R\right)$-injective. Note that these facts follow by extending the results of Donkin (see Don98]) to commutative rings. In particular, the arguments of the results Don98, Section 2.1 (5), (6),(7)] can easily be extended to commutative rings. Alternatively, we can see these facts as applications of Proposition 6.3 and Nakayama's Lemma.

For the Schur algebra, the dominant dimension is directly related with the characteristics of the residue fields of the ground ring. So, it is natural to consider a quantum version of the characteristic of the ring. This is done by replacing the identity by q on the definition of characteristic of a ring.

Definition 7.18. The q-characteristic of R, denoted by q char R, is the smallest positive number s such that $1+q+\cdots+q^{s-1}=0$ if such s exists, and zero otherwise.

We shall refer to q char R as the quantum characteristic of R when there is no misunderstanding about q. Note that $(1-q)\left(1+q+\cdots+q^{s-1}\right)=1-q^{s}$, for all $s>0$. So, for integral domains the quantum characteristic is zero if and only if either q is not a root of unity or $q=1$ and char $R=0$. We refer to LQ13 for a more detailed discussion of quantum characteristic.

The computation of dominant dimension for quantised Schur algebras over fields is due to Fang and Miyachi.

Theorem 7.19. [FM19, Theorem 3.13] Let K be a field. Assume that $q=u^{-2}$ for some non-zero element $u \in K$.

$$
\operatorname{domdim} S_{K, q}(n, d)= \begin{cases}2(q \operatorname{char} K-1) & \text { if } d \geq q \operatorname{char} K>0 \tag{194}\\ +\infty, & \text { otherwise }\end{cases}
$$

We will now extend this computation for all q-Schur algebras satisfying $n \geq d$. Further, we can determine the relative dominant dimension of the q-Schur algebra by knowing the invertible elements of R.

Theorem 7.20. Let R be a commutative ring with invertible element $u \in R$. Put $q=u^{-2}$. If $n \geq d$, then $\left(S_{R, q}(n, d), V^{\otimes d}\right)$ is a relative gendo-symmetric R-algebra and

$$
\begin{equation*}
\operatorname{domdim}\left(S_{R, q}(n, d), R\right)=\inf \left\{2 s \in \mathbb{N} \mid 1+q+\cdots+q^{s} \notin U(R), s<d\right\} \tag{195}
\end{equation*}
$$

Proof. By Proposition 6.3, $V^{\otimes d}$ is a projective $\left(S_{R, q}(n, d)\right)$-injective-strongly faithful module. Hence, $\left(S_{R, q}(n, d), V^{\otimes d}, D V^{\otimes d}\right)$ is a RQF3 algebra. Let $\operatorname{MaxSpec}(R)$ be the set of maximal ideals of R.

By Theorem 6.13.

$$
\begin{align*}
\operatorname{domdim}\left(S_{R, q}(n, d), R\right) & =\inf \left\{\operatorname{domdim} S_{R, q}(n, d) \otimes_{R} R(\mathfrak{m}) \mid \mathfrak{m} \in \operatorname{MaxSpec}(R)\right\} \tag{196}\\
& =\inf \left\{\operatorname{domdim} S_{R(\mathfrak{m}), q_{\mathfrak{m}}}(n, d) \mid \mathfrak{m} \in \operatorname{MaxSpec}(R)\right\} \geq 2 \tag{197}
\end{align*}
$$

where $q_{\mathfrak{m}}$ is the image of q in $R(\mathfrak{m})$. In particular, $V^{\otimes d}$ is a generator-cogenerator of $H_{R, q}(d)$. Similarly to Proposition 3.11, we can define an R-linear map $\pi: H_{R, q}(d) \rightarrow R$, given by

$$
\pi\left(T_{\sigma}\right)=\left\{\begin{array}{l}
1_{R}, \quad \text { if } \sigma=e \\
0, \text { otherwise }
\end{array}, \quad \sigma \in S_{d}\right.
$$

Afterwards, we can define the $H_{R, q}(d)$-isomorphism $\phi: H_{R, q}(d) \rightarrow D H_{R, q}(d)$, given by $\phi\left(T_{\sigma}\right)\left(T_{\omega}\right)=$ $\pi\left(T_{\sigma} T_{\omega}\right)$ for every $\sigma, \omega \in S_{d}$. This yields that the Hecke algebra $H_{R, q}(d)$ is a relative symmetric R algebra. By Theorem 7.8, $\left(S_{R, q}(n, d), V^{\otimes d}\right)$ is a relative gendo-symmetric R-algebra. First, we will show that

$$
\begin{equation*}
\operatorname{domdim}\left(S_{R, q}(n, d), R\right) \leq \inf \left\{2 s \in \mathbb{N} \mid 1+q+\cdots+q^{s} \notin U(R), s<d\right\} \tag{198}
\end{equation*}
$$

If the right hand side is infinite, then there is nothing to prove. Assume that there exists $s<d$ such that $1+q+\cdots+q^{s} \notin U(R)$. Then, $1+q+\cdots+q^{s}$ belongs to some maximal ideal of R, say \mathfrak{m}. Therefore, $1+q_{\mathfrak{m}}+\ldots+q_{\mathfrak{m}}^{s}$ is zero in $R(\mathfrak{m})$. Assume that $q_{\mathfrak{m}}=1$ in $R(\mathfrak{m})$. Then, $0 \neq q_{\mathfrak{m}} \operatorname{char} R(\mathfrak{m})=\operatorname{char} R(\mathfrak{m}) \leq$ $s+1 \leq d-1+1=d$, so domdim $S_{R(\mathfrak{m}), q_{\mathfrak{m}}}(n, d) \leq 2 s$. Now, assume that $q_{\mathfrak{m}} \neq 1$. Then,

$$
\begin{equation*}
0<q_{\mathfrak{m}} \operatorname{char} R(\mathfrak{m}) \leq s+1 \leq d-1+1=d \tag{199}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{domdim}\left(S_{R(\mathfrak{m}), q_{\mathfrak{m}}}(n, d), R\right)=2\left(q_{\mathfrak{m}} \operatorname{char}-1\right) \leq 2 s \tag{200}
\end{equation*}
$$

So, our claim follows. If domdim $\left(S_{R, q}(n, d), R\right)$ is infinite, then, of course, that the equality 195 holds. Suppose that $\operatorname{dom} \operatorname{dim}\left(S_{R, q}(n, d), R\right)=l>0$. So, there exists a maximal ideal \mathfrak{m} of R such that

$$
\begin{equation*}
l=\operatorname{domdim} S_{R(\mathfrak{m}), q \mathfrak{m}}(n, d)=2\left(q_{\mathfrak{m}} \operatorname{char} R(\mathfrak{m})-1\right) \tag{201}
\end{equation*}
$$

and $0<q_{\mathfrak{m}}$ char $R(\mathfrak{m}) \leq d$. By definition of quantum characteristic, the image of $1+q+\cdots+q^{q_{\mathfrak{m}}}$ char $R(\mathfrak{m})-1$ in $R(\mathfrak{m})$ is zero. So, $1+q+\cdots+q^{q_{\mathfrak{m}}}$ char $R(\mathfrak{m})-1$ belongs to \mathfrak{m}. Since $q_{\mathfrak{m}}$ char $R(\mathfrak{m})-1 \leq d-1<d$ then $l \in\left\{2 s \in \mathbb{N} \mid 1+q+\cdots+q^{s} \notin U(R), s<d\right\}$. This finishes the proof.

We can now compute $\operatorname{domdim}\left(S_{\mathbb{Z}\left[u, u^{-1}\right], u^{-2}}(n, d), \mathbb{Z}\left[u, u^{-1}\right]\right)$. The invertible elements of $\mathbb{Z}\left[u, u^{-1}\right]$ are the powers of u and the constants 1 and -1 . Hence, $1+q=1+u^{-2}$ is not invertible. So,

$$
\begin{equation*}
\operatorname{domdim}\left(S_{\mathbb{Z}\left[u, u^{-1}\right], u^{-2}}(n, d), \mathbb{Z}\left[u, u^{-1}\right]\right)=2, \quad d \geq 2 \tag{202}
\end{equation*}
$$

A Appendix On Spectral sequences

In most cases, the computation of Ext and Tor groups is not done directly by the definition since it is not practical. Instead, spectral sequences provide useful ways to compute homology and cohomology of complexes. For a more detailed approach, we refer to (Wei03, Rot09).

Definition A.1. A (homology) spectral sequence (starting with E^{a}) in an abelian category \mathcal{A} consists of the following data:

- For $r \geq a$, the r-page is a collection of objects of $\mathcal{A}\left\{E_{i, j}^{r}\right\}, i, j \in \mathbb{Z}$.
- Maps $d_{i, j}^{r}: E_{i, j}^{r} \rightarrow E_{i-r, j+r-1}^{r}$ satisfying $d_{i, j}^{r} \circ d_{i+r, j-r+1}^{r}=0$ and $E_{i, j}^{r+1}=\operatorname{ker} d_{i, j}^{r} / \operatorname{im} d_{i+r, j-r+1}^{r}$.

If $E_{i, j}^{r}=0$ unless $i \geq 0$ and $j \geq 0$, then we say that $\left\{E_{i, j}^{r}\right\}$ is a first quadrant homology spectral sequence.

Hence the $(r+1)$-page contains the homology of the differential of the r-page. If the value at (i, j)-spot stabilizes from some page on, then we denote this value by $E_{i, j}^{\infty}$.
Definition A.2. We say that a first quadrant (homology) spectral sequence converges to H_{*}, written as

$$
E_{i, j}^{a} \Longrightarrow H_{i+j}
$$

if we are given a collection of objects H_{n} of \mathcal{A}, each having a finite filtration

$$
0=H_{n}^{-1} \subset H_{n}^{0} \subset H_{n}^{1} \subset \cdots \subset H_{n}^{n}=H_{n}
$$

such that $E_{i, n-i}^{\infty} \simeq H_{n}^{i} / H_{n}^{i-1}$ for $0 \leq i \leq n$.
Lemma A.3. Assume that $E_{i, j}^{2} \Longrightarrow H_{i+j}$ is a first quadrant spectral sequence. Then, there is an exact sequence

$$
\begin{equation*}
H_{2} \rightarrow E_{2,0}^{2} \rightarrow E_{0,1}^{2} \rightarrow H_{1} \rightarrow E_{1,0}^{2} \rightarrow 0 \tag{203}
\end{equation*}
$$

Proof. By convergence, we have the filtration

$$
\begin{equation*}
0=H_{1}^{-1} \subset H_{1}^{0} \subset H_{1}^{1}=H_{1} \tag{204}
\end{equation*}
$$

with $E_{1,0}^{\infty} \simeq H_{1}^{1} / H_{1}^{0}$ and $E_{0,1}^{\infty} \simeq H_{1}^{0} / H_{1}^{-1}=H_{1}^{0}$. In particular, there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{0,1}^{\infty} \rightarrow H_{1} \rightarrow E_{1,0}^{\infty} \rightarrow 0 \tag{205}
\end{equation*}
$$

Let $n \geq 2$. Then,

$$
\begin{align*}
E_{1,0}^{n+1} & =\operatorname{ker}\left(d_{1,0}^{n}: E_{1,0}^{n} \rightarrow E_{1-n, n-1}^{n}\right) / \operatorname{im}\left(d_{1+n, 1-n}^{n}: E_{1+n,-n+1}^{n} \rightarrow E_{1,0}^{n}\right) \tag{206}\\
& =E_{1,0}^{n} \tag{207}
\end{align*}
$$

By induction, $E_{1,0}^{n}=E_{1,0}^{2}$ for $n \geq 2$. By definition, $E_{1,0}^{\infty}=E_{1,0}^{2}$. We will now compute $E_{0,1}^{\infty}$. For $n \geq 3$,

$$
\begin{equation*}
E_{0,1}^{n+1}=\operatorname{ker} d_{0,1}^{n} / \operatorname{im} d_{n, 2-n}^{n}=\operatorname{ker} d_{0,1}^{n}=\operatorname{ker}\left(E_{0,1}^{n} \rightarrow E_{-n, n}^{n}\right)=E_{0,1}^{n} \tag{208}
\end{equation*}
$$

By induction, it follows that

$$
\begin{equation*}
E_{0,1}^{\infty}=E_{0,1}^{3}=\operatorname{ker} d_{0,1}^{2} / \operatorname{im} d_{2,0}^{2}=E_{0,1}^{2} / \operatorname{im}\left(E_{2,0}^{2} \rightarrow E_{0,1}^{2}\right)=\operatorname{coker}\left(E_{2,0}^{2} \rightarrow E_{0,1}^{2}\right) \tag{209}
\end{equation*}
$$

Now, $E_{2,0}^{\infty}=H_{2}^{2} / H_{2}^{1}=H_{2} / H_{2}^{1}$. For $n \geq 2$,

$$
\begin{equation*}
E_{2,0}^{n+1}=\operatorname{ker} d_{2,0}^{n} / \operatorname{im} d_{2+n, 1-n}^{n}=\operatorname{ker}\left(E_{2,0}^{n} \rightarrow E_{2-n, n-1}^{n}\right) \tag{210}
\end{equation*}
$$

Therefore, $E_{2,0}^{\infty}=\operatorname{ker}\left(E_{2,0}^{2} \rightarrow E_{0,1}^{2}\right)$. We constructed an exact sequence

Lemma A.4. Let $q \geq 1$. Assume that $E_{i, j}^{2} \Longrightarrow H_{i+j}$ is a first quadrant spectral sequence and $E_{i, j}^{2}=0$ for $1 \leq j \leq q$. Then, $E_{i, 0}^{2} \simeq H_{i}, 1 \leq i \leq q$ and there is an exact sequence

$$
\begin{equation*}
H_{q+2} \rightarrow E_{q+2,0}^{2} \rightarrow E_{0, q+1}^{2} \rightarrow H_{q+1} \rightarrow E_{q+1,0}^{2} \rightarrow 0 \tag{211}
\end{equation*}
$$

Proof. We will start by showing by induction that $E_{i, j}^{s}=0$ for every $s \geq 2,1 \leq j \leq q$ and every $i \geq 0$. Let $1 \leq j \leq q$ and $i \geq 0$. The case $s=2$ follows by assumption. Assume that $E_{l}^{i, j}=0$ for some $s \geq 2$ and $l \leq s$. Then,

$$
\begin{equation*}
E_{i, j}^{s+1}=\operatorname{ker} d_{i, j}^{s} / \operatorname{im} d_{i+s, j-s+1}^{s}=0 \tag{212}
\end{equation*}
$$

since by induction ker $d_{i, j}^{s} \subset E_{i, j}^{s}=0$ and thus ker $d_{i, j}^{s}=0$.
Therefore, $E_{i, j}^{s}=0$ for every $s \geq 2,1 \leq j \leq q$ and every $i \geq 0$. In particular,

$$
\begin{equation*}
E_{i, j}^{\infty}=0,1 \leq j \leq q, i \geq 0 \tag{213}
\end{equation*}
$$

Since $1-s$ is a negative value, $E_{i+s, 1-s}^{s}=0$ and thus $\operatorname{im} d_{i+s,-s+1}^{s}=0$. If $s \leq q+1$ or $i+1 \leq s$, then $E_{s}^{i-s, s-1}=0$. For $s \leq q+1$ or $i+1 \leq s$, we have

$$
\begin{equation*}
E_{i, 0}^{s+1}=\operatorname{ker}\left(d_{i, 0}^{s}: E_{i, 0}^{s} \rightarrow E_{i-s, s-1}^{s}\right) / \operatorname{im} d_{i+s,-s+1}^{s}=E_{i, 0}^{s} \tag{214}
\end{equation*}
$$

In particular, by an induction argument

$$
\begin{align*}
E_{q+2,0}^{q+2} & =E_{q+2,0}^{q+1}=E_{q+2,0}^{2} \tag{215}\\
E_{i, 0}^{s+1} & =E_{i, 0}^{s}=E_{i, 0}^{2}, \forall s \geq 2,1 \leq i \leq q+1 \tag{216}
\end{align*}
$$

Thus,

$$
\begin{equation*}
E_{i, 0}^{\infty}=E_{i, 0}^{2}, 1 \leq i \leq q+1 \tag{217}
\end{equation*}
$$

For $s \geq q+3$, we have $E_{s}^{q+2-s, s-1}=0$ and thus $\operatorname{ker} d_{q+2,0}^{s}=E_{q+2,0}^{s}$.
Therefore, we have

$$
\begin{align*}
E_{q+2,0}^{s+1} & =\operatorname{ker} d_{q+2,0}^{s} / \operatorname{im} d_{q+2+s,-s+1}^{s}=E_{q+2,0}^{s}, s \geq q+3 \text { and } \tag{218}\\
E_{q+2,0}^{\infty} & =E_{q+2,0}^{q+3}=\operatorname{ker} d_{q+2,0}^{q+2} / \operatorname{im} d_{q+2+(q+2),-(q+2)+1}^{q+2}=\operatorname{ker}\left(d_{q+2,0}^{q+2}: E_{q+2,0}^{q+2} \rightarrow E_{0, q+1}^{q+2}\right) \tag{219}\\
& =\operatorname{ker}\left(E_{q+2,0}^{2} \rightarrow E_{0, q+1}^{q+2}\right) . \tag{220}
\end{align*}
$$

Now we are ready to establish $E_{n, 0}^{2} \simeq H_{n}, 1 \leq n \leq q$.
Let $1 \leq n \leq q$ and $1 \leq i \leq n-1$. Then, $1 \leq n-i \leq q$. Hence by convergence and (213)

$$
\begin{align*}
0 & =E_{i, n-i}^{\infty} \simeq H_{n}^{i} / H_{n}^{i-1}, \text { and } \tag{221}\\
H_{n}^{n-1} & =H_{n}^{n-2}=H_{n}^{0} \simeq E_{0, n}^{\infty}=0 \tag{222}\\
H_{n} & =H_{n}^{n}=H_{n}^{n} H_{n}^{n-1} \simeq E_{n, 0}^{\infty}=E_{n, 0}^{2} . \tag{223}
\end{align*}
$$

Now we shall proceed to construct the desired exact sequence. By the filtration given by convergence, we have for any $n \geq 0, E_{n, 0}^{\infty} \simeq H_{n}^{n} / H_{n}^{n-1}=H_{n} / H_{n}^{n-1}$. Thus, we have a canonical epimorphism $H_{n} \rightarrow E_{n, 0}^{\infty}$ with kernel H_{n}^{n-1} for any $n \geq 0$. In particular, we have the exact sequence and the epimorphism

$$
\begin{equation*}
0 \rightarrow H_{q+1}^{q} \rightarrow H_{q+1} \rightarrow E_{q+1,0}^{\infty} \underset{\underline{217}}{=} E_{q+1,0}^{2} \rightarrow 0, \quad H_{q+2} \rightarrow E_{q+2,0}^{\infty} \tag{224}
\end{equation*}
$$

For $2 \leq s \leq q+1,1 \leq q+2-s \leq q$. Hence $E_{s, q+2-s}^{s}=0$, for $2 \leq s \leq q+1$. Consequently, $\operatorname{im} d_{s, q+2-s}^{s}=0$, for $2 \leq s \leq q+1$. Therefore, for $2 \leq s \leq q+1$,

$$
\begin{equation*}
E_{0, q+1}^{s+1}=\operatorname{ker}\left(E_{0, q+1}^{s} \rightarrow E_{-s, q+2-s}^{s}\right)=E_{0, q+1}^{s} \tag{225}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
E_{0, q+1}^{q+2}=E_{0, q+1}^{q+1}=E_{0, q+1}^{2} \tag{226}
\end{equation*}
$$

In view of 220,

$$
\begin{equation*}
E_{q+2,0}^{\infty}=\operatorname{ker}\left(E_{q+2,0}^{2} \rightarrow E_{0, q+1}^{2}\right) \tag{227}
\end{equation*}
$$

For $s \geq q+3, \operatorname{im} d_{s, q+2-s}^{s}=0$, and thus

$$
\begin{equation*}
E_{0, q+1}^{s+1}=\operatorname{ker} d_{0, q+1}^{s} / \operatorname{im} d_{s, q+2-s}^{s}=\operatorname{ker}\left(d_{0, q+1}^{s}: E_{0, q+1}^{s} \rightarrow E_{-s, q+s}^{s}\right)=E_{0, q+1}^{s} \tag{228}
\end{equation*}
$$

Therefore, $E_{0, q+1}^{\infty}=E_{0, q+1}^{q+3}$.
By 213) and using the filtration given by convergence for $1 \leq i \leq q$

$$
\begin{equation*}
0=E_{i, q+1-i}^{\infty}=H_{q+1}^{i} / H_{q+1}^{i-1} \tag{229}
\end{equation*}
$$

This gives us

$$
\begin{align*}
H_{q+1}^{q} & =H_{q+1}^{q-1}=H_{q+1}^{0}=E_{0, q+1}^{\infty}=E_{0, q+1}^{q+3}=\operatorname{ker} d_{0, q+1}^{q+2} / \operatorname{im} d_{q+2,0}^{q+2} \tag{230}\\
& =E_{0, q+1}^{q+2} / \operatorname{im}\left(E_{q+2,0}^{q+2} \rightarrow E_{0, q+1}^{q+2}\right)=E_{0, q+1}^{2} / \operatorname{im}\left(E_{q+2,0}^{2} \rightarrow E_{0, q+1}^{2}\right) \tag{231}
\end{align*}
$$

Combining (231), 224 and (227) we obtain the exact sequence

Lemma A.5. (Künneth spectral sequence for chain complexes) Let P be a flat chain complex of R modules $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$. Let M be an R-module. Then,

$$
E_{i, j}^{2}=\operatorname{Tor}_{i}^{R}\left(H_{j}(P), M\right) \Longrightarrow H_{i+j}\left(P \otimes_{R} M\right), \quad i, j \geq 0
$$

Proof. See for example Wei03, Theorem 5.6.4].

Acknowledgements

The results of this paper are contained in the author's forthcoming PhD thesis, financially supported by Studienstiftung des Deutschen Volkes. The author would like to thank Steffen Koenig for all his comments and suggestions towards improving this manuscript. The author would like to thank the anonymous reviewer for his/her comments.

References

[AR72] M. Auslander and K. W. Roggenkamp. A characterization of orders of finite lattice type. Inventiones Mathematicae, 17:79-84, 1972. doi:10.1007/BF01390025.
[ARS55] M. Auslander, I. Reiten, and S. O. Smalø. Representation theory of Artin algebras., volume 36. Cambridge: Cambridge University Press, 1995. doi:10.1017/CB09780511623608.
[Aus71] M. Auslander. Representation dimension of Artin algebras. With the assistance of Bernice Auslander. Queen Mary College Mathematics Notes. London: Queen Mary College. 179 p. , 1971.
[Coh89] P. M. Cohn. Algebra. Volume 2. John Wiley \& Sons, Ltd., Chichester, 2nd edition, 1989.
[CPS90] E. Cline, B. Parshall, and L. Scott. Integral and graded quasi-hereditary algebras, I. Journal of Algebra, 131(1):126-160, 1990. doi:10.1016/0021-8693(90)90169-0.
[CR06] C. W. Curtis and I. Reiner. Representation theory of finite groups and associative algebras. AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original. doi:10.1090/ chel/356.
[Cru19] T. Cruz. Schur-Weyl duality over commutative rings. Commun. Algebra, 47(4):1619-1628, 2019. doi:10.1080/00927872.2018.1513010.
[Cru21] T. Cruz. A characterisation of Morita algebras in terms of covers. Algebras and Representation Theory, 2021. doi:10.1007/s10468-021-10064-8.
[DD91] R. Dipper and S. Donkin. Quantum GL_n. Proc. Lond. Math. Soc. (3), 63(1):165-211, 1991. doi:10.1112/plms/s3-63.1.165.
[DDPW08] B. Deng, J. Du, B. Parshall, and J. Wang. Finite dimensional algebras and quantum groups, volume 150. Providence, RI: American Mathematical Society (AMS), 2008.
[DJ89] R. Dipper and G. James. The q-Schur algebra. Proc. Lond. Math. Soc. (3), 59(1):23-50, 1989. doi:10.1112/plms/s3-59.1.23.
[DJ91] R. Dipper and G. James. q-tensor space and q-Weyl modules. Trans. Am. Math. Soc., $327(1): 251-282,1991$. doi:10.2307/2001842.
[Don98] S. Donkin. The q-Schur algebra, volume 253 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. URL: https://doi.org/10. 1017/CB09780511600708;https://doi.org/10.1017/CB09780511600708, doi:10.1017/ CB09780511600708.
[Du92] J. Du. The modular representation theory of q-Schur algebras. Trans. Am. Math. Soc., 329(1):253-271, 1992. doi:10.2307/2154087.
[EJ11] E. E. Enochs and O. M. G. Jenda. Relative homological algebra. Vol. 1. 2nd revised and extended ed, volume 30. Berlin: Walter de Gruyter, 2nd revised and extended ed. edition, 2011. doi:10.1515/9783110215212.
[EM65] S. Eilenberg and J. C. Moore. Foundations of relative homological algebra., volume 55. Providence, RI: American Mathematical Society (AMS), 1965. doi:10.1090/memo/0055.
[End67] S. Endo. Completely faithful modules and quasi-Frobenius algebras. J. Math. Soc. Japan, 19:437-456, 1967. doi:10.2969/jmsj/01940437.
[Fad65] D. K. Faddeev. Introduction to multiplicative theory of modules of integral representations. Proc. Steklov Inst. Math., 80:164-210, 1965.
[FHK21] M. Fang, W. Hu, and S. Koenig. On derived equivalences and homological dimensions. J. Reine Angew. Math., 770:59-85, 2021. doi:10.1515/crelle-2020-0006.
[FK11a] M. Fang and S. Koenig. Endomorphism algebras of generators over symmetric algebras. J. Algebra, 332(1):428-433, 2011. doi:10.1016/j.jalgebra.2011.02.031.
[FK11b] M. Fang and S. Koenig. Schur functors and dominant dimension. Trans. Am. Math. Soc., 363(3):1555-1576, 2011. doi:10.1090/s0002-9947-2010-05177-3.
[FK16] M. Fang and S. Koenig. Gendo-symmetric algebras, canonical comultiplication, bar cocomplex and dominant dimension. Trans. Am. Math. Soc., 368(7):5037-5055, 2016. doi: 10.1090/tran/6504.
[FM19] M. Fang and H. Miyachi. Hochschild cohomology and dominant dimension. Trans. Am. Math. Soc., 371(8):5267-5292, 2019. doi:10.1090/tran/7704.
[FOY18] M. Fang, O.Kerner, and K. Yamagata. Canonical bimodules and dominant dimension. Trans. Am. Math. Soc., 370(2):847-872, 2018. doi:10.1090/tran/6976.
[Gre07] J. A. Green. Polynomial representations of GL_n. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, J. A. Green and M. Schocker. 2nd corrected and augmented edition., volume 830. Berlin: Springer, 2nd corrected and augmented edition edition, 2007. doi:10.1007/3-540-46944-3.
[Hat63] A. Hattori. Semisimple algebras over a commutative ring. Journal of the Mathematical Society of Japan, 15(4):404-419, 1963. doi:10.2969/jmsj/01540404.
[Hoc56] G. Hochschild. Relative homological algebra. Transactions of the American Mathematical Society, 82(1):246-269, 1956. doi:10.2307/1992988.
[Hos89] M. Hoshino. On dominant dimension of Noetherian rings. Osaka J. Math., 26(2):275-280, 1989. URL: https://projecteuclid.org/euclid.ojm/1200781543.
[Iya07] O. Iyama. Auslander correspondence. Adv. Math., 210(1):51-82, 2007. doi:10.1016/j.aim. 2006.06.003.
[Jon63] A. Jones. Groups with a finite number of indecomposable integral representations. Mich. Math. J., 10:257-261, 1963. doi:10.1307/mmj/1028998908.
[Kat68] T. Kato. Rings of dominant dimension \geq 1. Proc. Japan Acad., 44:579-584, 1968. doi: $10.3792 / \mathrm{pja} / 1195521070$.
[Kne66] M. Kneser. Einige Bemerkungen über ganzzahlige Darstellungen endlicher Gruppen. Arch. Math., 17:377-379, 1966. doi:10.1007/BF01899614.
[KSX01] S. König, I. H. Slungård, and C. Xi. Double centralizer properties, dominant dimension, and tilting modules. Journal of Algebra, 240(1):393-412, 2001. doi:10.1006/jabr.2000.8726.
[KY13] O. Kerner and K. Yamagata. Morita algebras. J. Algebra, 382:185-202, 2013. doi:10.1016/ j.jalgebra.2013.02.013.
[KY14] O. Kerner and K. Yamagata. Morita theory, revisited. In Expository lectures on representation theory, volume 607 of Contemp. Math., page 85-96. Amer. Math. Soc., Providence, RI, 2014. doi:10.1090/conm/607/12094.
[LQ13] B. Le Stum and A. Quirós. On quantum state of numbers, 2013. arXiv:1310.8143.
[Mac95] S. Mac Lane. Homology. Reprint of the 3rd corr. print. 1975. Berlin: Springer-Verlag, reprint of the 3rd corr. print. 1975 edition, 1995. doi:10.1007/978-3-642-62029-4.
[Mat99] A. Mathas. Iwahori-Hecke algebras and Schur algebras of the symmetric group., volume 15. Providence, RI: American Mathematical Society, 1999. doi:10.1090/ulect/015/01.
[Mor58] K. Morita. Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6:83-142, 1958. URL: https://www. jstor.org/stable/43698445.
[Mue68] B. J. Mueller. The classification of algebras by dominant dimension. Can. J. Math., 20:398-409, 1968. doi:10.4153/CJM-1968-037-9.
[PW91] B. Parshall and J. Wang. Quantum linear groups., volume 439. Providence, RI: American Mathematical Society (AMS), 1991. doi:10.1090/memo/0439
[Rei70] I. Reiner. A survey of integral representation theory. Bull. Am. Math. Soc., 76:159-227, 1970. doi:10.1090/s0002-9904-1970-12441-7.
[Rei03] I. Reiner. Maximal orders. Reprint of the 1975 original. Oxford: Oxford University Press, reprint of the 1975 original edition, 2003.
[Rot09] J. J. Rotman. An introduction to homological algebra. 2nd ed. Berlin: Springer, 2nd ed. edition, 2009. doi:10.1007/b98977.
[Rou08] R. Rouquier. q-Schur algebras and complex reflection groups. Moscow Mathematical Journal, 8(1):119-158, 184, 2008. doi:10.17323/1609-4514-2008-8-1-119-158.
[Tac63] H. Tachikawa. A characterization of QF-3 algebras. Proc. Am. Math. Soc., 13:701-703, 1963. doi:10.2307/2034157.
[Tac73] H. Tachikawa. Quasi-Frobenius rings and generalizations. QF-3 and QF-1 rings. Notes by Claus Michael Ringel, volume 351. Springer, Cham, 1973. doi:10.1007/bfb0059997.
[Wei03] C. A. Weibel. An introduction to homological algebra. Number 38 in Cambridge studies in advanced mathematics. Cambridge Univ. Press, Cambridge, reprint. 1997, transf. to digital print. edition, 2003. doi:10.1017/CBO9781139644136.
[Yam96] K. Yamagata. Frobenius algebras. In Handbook of algebra. Volume 1, page 841-887. Amsterdam: North-Holland, 1996. doi:10.1016/S1570-7954(96)80028-3.
[Zas38] H. Zassenhaus. Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen. Abh. Math. Semin. Univ. Hamb., 12:276-288, 1938. doi:10.1007/bf02948949
[Zim14] A. Zimmermann. Representation theory, volume 19 of Algebra and Applications. Springer, Cham, 2014. A homological algebra point of view. doi:10.1007/978-3-319-07968-4.

TIAGO CRUZ,
Institute of Algebra and Number Theory
University of Stuttgart,
Pfaffenwaldring 57, 70569 Stuttgart, Germany,
E-mail address, T. Cruz: tiago.cruz@mathematik.uni-stuttgart.de

